Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method

被引:67
作者
Borhanifar, A. [1 ]
Abazari, Reza [2 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Ardebil, Iran
[2] Islamic Azad Univ, Ardabil Branch, Dept Math, Ardebil, Iran
关键词
Schrodinger equations; Coupled Schrodinger equations; Differential transformation method; HOMOTOPY-PERTURBATION; SYSTEM;
D O I
10.1016/j.optcom.2010.01.046
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents the coupled version of a previous work on nonlinear Schrodinger equation [23]. It focuses on the construction of approximate solutions of nonlinear Schrodinger equations. In this paper, we applied the differential transformation method (DTM) to solving coupled Schrodinger equations. The obtained results show that the technique suggested here is accurate and easy to apply. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2026 / 2031
页数:6
相关论文
共 26 条
[1]   Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1196-1207
[2]   On the two-dimensional differential transform method [J].
Ayaz, F .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :361-374
[3]   Exact solutions for non-linear Schrodinger equations by He's homotopy perturbation method [J].
Biazar, J. ;
Ghazvini, H. .
PHYSICS LETTERS A, 2007, 366 (1-2) :79-84
[4]   Exact solutions for non-linear Schrodinger equations by differential transformation method [J].
Borhanifar, A. ;
Abazari, Reza .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 35 (1-2) :37-51
[5]   New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations [J].
Borhanifar, A. ;
Kabir, M. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) :158-167
[6]  
BORHANIFAR A, 2008, J NONLINEAR SCI APPL, P224
[7]  
BORHANIFAR A, CHAOS FRACT, DOI DOI 10.1016/J.CHAOS.2009.03.064
[8]  
BORHANIFAR A, 2005, COMPUT MATH MODEL, V16
[9]  
Chen CK, 1999, APPL MATH COMPUT, V106, P171, DOI 10.1016/S0096-3003(98)10115-7
[10]   Periodic solutions for systems of coupled nonlinear Schrodinger equations with three and four components [J].
Chow, KW ;
Lai, DWC .
PHYSICAL REVIEW E, 2003, 68 (01) :4