Artificial intelligence applied to musculoskeletal oncology: a systematic review

被引:19
作者
Li, Matthew D. [1 ,2 ]
Ahmed, Syed Rakin [2 ,3 ,4 ]
Choy, Edwin [5 ]
Lozano-Calderon, Santiago A. [6 ]
Kalpathy-Cramer, Jayashree [2 ]
Chang, Connie Y. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[3] Harvard Univ, Harvard Med Sch, Harvard Grad Program Biophys, Cambridge, MA 02138 USA
[4] Dartmouth Coll, Geisel Sch Med Dartmouth, Hanover, NH 03755 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Hematol Oncol, Boston, MA 02115 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Orthoped Surg, Boston, MA 02115 USA
关键词
Artificial intelligence; Deep learning; Machine learning; Musculoskeletal oncology; Radiology; Pathology; Orthopedic oncology; Radiation oncology; BONE; DIAGNOSIS;
D O I
10.1007/s00256-021-03820-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 99 条
[81]   A Novel Automated Platform for Quantifying the Extent of Skeletal Tumour Involvement in Prostate Cancer Patients Using the Bone Scan Index [J].
Ulmert, David ;
Kaboteh, Reza ;
Fox, Josef J. ;
Savage, Caroline ;
Evans, Michael J. ;
Lilja, Hans ;
Abrahamsson, Per-Anders ;
Bjork, Thomas ;
Gerdtsson, Axel ;
Bjartell, Anders ;
Gjertsson, Peter ;
Hoglund, Peter ;
Lomsky, Milan ;
Ohlsson, Mattias ;
Richter, Jens ;
Sadik, May ;
Morris, Michael J. ;
Scher, Howard I. ;
Sjostrand, Karl ;
Yu, Alice ;
Suurkula, Madis ;
Edenbrandt, Lars ;
Larson, Steven M. .
EUROPEAN UROLOGY, 2012, 62 (01) :78-84
[82]   Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas [J].
van IJzendoorn, David G. P. ;
Szuhai, Karoly ;
Briaire-de Bruijn, Inge H. ;
Kostine, Marie ;
Kuijjer, Marieke L. ;
Bovee, Judith V. M. G. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (02)
[83]   Artificial intelligence in musculoskeletal oncological radiology [J].
Vogrin, Matjaz ;
Trojner, Teodor ;
Kelc, Robi .
RADIOLOGY AND ONCOLOGY, 2021, 55 (01) :1-6
[84]   Artificial Intelligence for Classification of Soft-Tissue Masses at US [J].
Wang, Benjamin ;
Perronne, Laetitia ;
Burke, Christopher ;
Adler, Ronald S. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (01)
[85]   Radiomics and Machine Learning With Multiparametric Preoperative MRI May Accurately Predict the Histopathological Grades of Soft Tissue Sarcomas [J].
Wang, Hexiang ;
Chen, Haisong ;
Duan, Shaofeng ;
Hao, Dapeng ;
Liu, Jihua .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (03) :791-797
[86]   A review on medical imaging synthesis using deep learning and its clinical applications [J].
Wang, Tonghe ;
Lei, Yang ;
Fu, Yabo ;
Wynne, Jacob F. ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (01) :11-36
[87]   Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases [J].
Wang, Zhiyu ;
Wen, Xiaoting ;
Lu, Yaohong ;
Yao, Yang ;
Zhao, Hui .
ONCOTARGET, 2016, 7 (11) :12612-12622
[88]  
Wolf T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, P38
[89]   Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods [J].
Xu, Lina ;
Tetteh, Giles ;
Lipkova, Jana ;
Zhao, Yu ;
Li, Hongwei ;
Christ, Patrick ;
Piraud, Marie ;
Buck, Andreas ;
Shi, Kuangyu ;
Menze, Bjoern H. .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[90]   LDAPred: A Method Based on Information Flow Propagation and a Convolutional Neural Network for the Prediction of Disease-Associated lncRNAs [J].
Xuan, Ping ;
Jia, Lan ;
Zhang, Tiangang ;
Sheng, Nan ;
Li, Xiaokun ;
Li, Jinbao .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (18)