Artificial intelligence applied to musculoskeletal oncology: a systematic review

被引:19
作者
Li, Matthew D. [1 ,2 ]
Ahmed, Syed Rakin [2 ,3 ,4 ]
Choy, Edwin [5 ]
Lozano-Calderon, Santiago A. [6 ]
Kalpathy-Cramer, Jayashree [2 ]
Chang, Connie Y. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[3] Harvard Univ, Harvard Med Sch, Harvard Grad Program Biophys, Cambridge, MA 02138 USA
[4] Dartmouth Coll, Geisel Sch Med Dartmouth, Hanover, NH 03755 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Hematol Oncol, Boston, MA 02115 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Orthoped Surg, Boston, MA 02115 USA
关键词
Artificial intelligence; Deep learning; Machine learning; Musculoskeletal oncology; Radiology; Pathology; Orthopedic oncology; Radiation oncology; BONE; DIAGNOSIS;
D O I
10.1007/s00256-021-03820-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 99 条
[1]  
aBSI, EXINI DIAGNOSTICS AB
[2]   Developing an Improved Statistical Approach for Survival Estimation in Bone Metastases Management: The Bone Metastases Ensemble Trees for Survival (BMETS) Model [J].
Alcorn, Sara R. ;
Fiksel, Jacob ;
Wright, Jean L. ;
Elledge, Christen R. ;
Smith, Thomas J. ;
Perng, Powell ;
Saleemi, Sarah ;
McNutt, Todd R. ;
DeWeese, Theodore L. ;
Zeger, Scott .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03) :554-563
[3]   External Validation of PATHFx Version 3.0 in Patients Treated Surgically and Nonsurgically for Symptomatic Skeletal Metastases [J].
Anderson, Ashley B. ;
Wedin, Rikard ;
Fabbri, Nicola ;
Boland, Patrick ;
Healey, John ;
Forsberg, Jonathan A. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2020, 478 (04) :808-818
[4]   Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique [J].
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Syota ;
Muramatsu, Chisako ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Kuwada, Chiaki ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 128 (04) :424-430
[5]   Phase 3 Assessment of the Automated Bone Scan Index as a Prognostic Imaging Biomarker of Overall Survival in Men With Metastatic Castration-Resistant Prostate Cancer A Secondary Analysis of a Randomized Clinical Trial [J].
Armstrong, Andrew J. ;
Anand, Aseem ;
Edenbrandt, Lars ;
Bondesson, Eva ;
Bjartell, Anders ;
Widmark, Anders ;
Sternberg, Cora N. ;
Pili, Roberto ;
Tuvesson, Helen ;
Nordle, Orjan ;
Carducci, Michael A. ;
Morris, Michael J. .
JAMA ONCOLOGY, 2018, 4 (07) :944-951
[6]   Bone-Cancer Assessment and Destruction Pattern Analysis in Long-Bone X-ray Image [J].
Bandyopadhyay, Oishila ;
Biswas, Arindam ;
Bhattacharya, Bhargab B. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (02) :300-313
[7]   Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Enqvist, Olof ;
Ulen, Johannes ;
Poulsen, Mads H. ;
Simonsen, Jane ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 113 :89-95
[8]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[9]   How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation? [J].
Bongers, Michiel E. R. ;
Karhade, Aditya, V ;
Setola, Elisabetta ;
Gambarotti, Marco ;
Groot, Olivier Q. ;
Erdogan, Kivilcim E. ;
Picci, Piero ;
Donati, Davide M. ;
Schwab, Joseph H. ;
Palmerini, Emanuela .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2020, 478 (10) :2300-2308
[10]   Does the SORG Algorithm Predict 5-year Survival in Patients with Chondrosarcoma? An External Validation [J].
Bongers, Michiel E. R. ;
Thio, Quirina C. B. S. ;
Karhade, Aditya, V ;
Stor, Merel L. ;
Raskin, Kevin A. ;
Calderon, Santiago A. Lozano ;
DeLaney, Thomas F. ;
Ferrone, Marco L. ;
Schwab, Joseph H. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2019, 477 (10) :2296-2303