Margulis spacetimes via the arc complex

被引:25
作者
Danciger, Jeffrey [1 ]
Gueritaud, Francois [2 ,3 ]
Kassel, Fanny [2 ,3 ]
机构
[1] Univ Texas Austin, Dept Math, 1 Univ Stn C1200, Austin, TX 78712 USA
[2] CNRS, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
AFFINE TRANSFORMATIONS; DISCONTINUOUS GROUPS; SURFACES; BOUNDARY; GEOMETRY; SPACES; HYPERBOLICITY; 3-MANIFOLDS; GEODESICS;
D O I
10.1007/s00222-015-0610-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study strip deformations of convex cocompact hyperbolic surfaces, defined by inserting hyperbolic strips along a collection of disjoint geodesic arcs properly embedded in the surface. We prove that any deformation of the surface that uniformly lengthens all closed geodesics can be realized as a strip deformation, in an essentially unique way. The infinitesimal version of this result gives a parameterization, by the arc complex, of the moduli space of Margulis spacetimes with fixed convex cocompact linear holonomy. As an application, we provide a new proof of the tameness of such Margulis spacetimes M by establishing the Crooked Plane Conjecture, which states that M admits a fundamental domain bounded by piecewise linear surfaces called crooked planes. The noninfinitesimal version gives an analogous theory for noncompact complete anti-de Sitter 3-manifolds.
引用
收藏
页码:133 / 193
页数:61
相关论文
共 45 条
  • [1] Properly discontinuous groups of affine transformations: A survey
    Abels, H
    [J]. GEOMETRIAE DEDICATA, 2001, 87 (1-3) : 309 - 333
  • [2] [Anonymous], ELECT RES ANNOUNC AM
  • [3] Auslander Louis, 1964, TOPOLOGY, V3, P131, DOI DOI 10.1016/0040-9383(64)90012-6
  • [4] Brock J., 2015, J TOPOL IN PRESS
  • [5] Coarse and synthetic Weil-Petersson geometry: quasi-flats, geodesics and relative hyperbolicity
    Brock, Jeffrey
    Masur, Howard
    [J]. GEOMETRY & TOPOLOGY, 2008, 12 : 2453 - 2495
  • [6] Crooked halfspaces
    Burelle, Jean-Philippe
    Charette, Virginie
    Drumm, Todd A.
    Goldman, William M.
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2014, 60 (1-2): : 43 - 78
  • [7] Charette V., 2000, CONT MATH, V262, P69, DOI DOI 10.1090/C0NM/262/04168.
  • [8] Charette V., ARXIV150104535
  • [9] Fundamental domains in the Einstein Universe
    Charette, Virginie
    Francoeur, Dominik
    Lareau-Dussault, Rosemonde
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 174 : 62 - 80
  • [10] Finite-sided deformation spaces of complete affine 3-manifolds
    Charette, Virginie
    Drumm, Todd A.
    Goldman, William M.
    [J]. JOURNAL OF TOPOLOGY, 2014, 7 (01) : 225 - 246