Scalar curvature deformation and a gluing construction for the Einstein constraint equations

被引:271
作者
Corvino, J [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1007/PL00005533
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On a compact manifold, the scalar curvature map at generic metrics is a local surjection [F-M]. We show that this result may be localized to compact subdomains in an arbitrary Riemannian manifold. The method is extended to establish the existence of asymptotically flat, scalar-flat metrics on R-n (n greater than or equal to 3) which are spherically symmetric, hence Schwarzschild, at infinity, i.e. outside a compact set, Such metrics provide Cauchy data for the Einstein vacuum equations which evolve into nontrivial vacuum spacetimes which are identically Schwarzschild near spatial infinity.
引用
收藏
页码:137 / 189
页数:53
相关论文
共 16 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   COORDINATE INVARIANCE AND ENERGY EXPRESSIONS IN GENERAL RELATIVITY [J].
ARNOWITT, R ;
MISNER, CW ;
DESER, S .
PHYSICAL REVIEW, 1961, 122 (03) :997-&
[3]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[4]   NEW DEFINITION OF QUASILOCAL MASS [J].
BARTNIK, R .
PHYSICAL REVIEW LETTERS, 1989, 62 (20) :2346-2348
[5]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[6]  
Bartnik R., 1997, Tsing Hua Lectures on Geometry and Analysis, P5
[7]   DEFORMATIONS OF SCALAR CURVATURE [J].
FISCHER, AE ;
MARSDEN, JE .
DUKE MATHEMATICAL JOURNAL, 1975, 42 (03) :519-547
[8]   CONSTANT MEAN-CURVATURE SOLUTIONS OF THE EINSTEIN CONSTRAINT EQUATIONS ON CLOSED MANIFOLDS [J].
ISENBERG, J .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (09) :2249-2274
[9]   COMPLETE CONSTANT MEAN-CURVATURE SURFACES IN EUCLIDEAN 3-SPACE [J].
KAPOULEAS, N .
ANNALS OF MATHEMATICS, 1990, 131 (02) :239-330
[10]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91