Interface reliability and lifetime prediction of heavy aluminum wire bonds

被引:34
作者
Czerny, B. [1 ]
Khatibi, G. [1 ]
机构
[1] Vienna Univ Technol, Getreidemarkt 9-164, A-1060 Vienna, Austria
关键词
Al wire bonds; Reliability; Lifetime prediction; Mechanical fatigue; Power cycling; IGBT MODULES; STRAIN-RATE; FATIGUE; STRESS;
D O I
10.1016/j.microrel.2015.11.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study a high frequency mechanical fatigue testing procedure for evaluation of interfacial reliability of heavy wire bonds in power semiconductors is presented. A displacement controlled mechanical shear testing set-up working at a variable frequency of a few Hertz up to 10 kHz is used to assess the interfacial fatigue resistance of heavy Al wire-bond in IGBT devices. In addition, power cyclic tests were conducted on IGBT modules for in-situ measurement of the temperature distribution in the devices and determination of the thermally induced displacements in the wire bond loops. Finite Element Analysis was conducted to calculate the correlation between the thermally and mechanically induced interfacial stresses in the wire bonds. These stress values were converted into equivalent junction temperature swings (Delta T-j) in the devices based on which lifetime curves at different testing frequencies were obtained. Comparison of the fatigue life curves obtained at mechanical testing frequencies of up to 200 Hz with the power cycling data related to the wire bond lift-off failure revealed a very good conformity in the ranges of 50 to 160 K. A lifetime prediction model for Al wire bonds in IGBT modules is suggested by which the loading cycles to failure can be obtained as a function of Delta T-j and the mechanical testing frequency. The proposed accelerated shear fatigue testing procedure can be applied for rapid assessment of a variety of interconnects with different geometries and material combinations. Decoupling of the concurrent failure mechanisms and separation of the thermal, mechanical and environmental stress factors allows a more focused and efficient investigation of the interfaces in the devices. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2010, 6074934 IEC
[2]  
Bajons P., 1975, P INT C ULTR INT, P95
[3]  
Bayerer R., 2008, PROCEEDING CIPS 2008, P37
[4]  
Bayerer R., 2008, PCIM08
[5]   Advanced packaging yields higher performance and reliability in power electronics [J].
Bayerer, Reinhold .
MICROELECTRONICS RELIABILITY, 2010, 50 (9-11) :1715-1719
[6]   Selected failure mechanisms of modern power modules [J].
Ciappa, M .
MICROELECTRONICS RELIABILITY, 2002, 42 (4-5) :653-667
[7]   On the effect of power cycling stress on IGBT modules [J].
Cova, P ;
Fantini, F .
MICROELECTRONICS AND RELIABILITY, 1998, 38 (6-8) :1347-1352
[8]   Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions [J].
Czerny, B. ;
Lederer, M. ;
Nagl, B. ;
Trnka, A. ;
Khatibi, G. ;
Thoben, M. .
MICROELECTRONICS RELIABILITY, 2012, 52 (9-10) :2353-2357
[9]   Fast power cycling protocols implemented in an automated test bench dedicated to IGBT module ageing [J].
Forest, Francois ;
Rashed, Amgad ;
Huselstein, Jean-Jacques ;
Martire, Thierry ;
Enrici, Philippe .
MICROELECTRONICS RELIABILITY, 2015, 55 (01) :81-92
[10]  
Fujii Y., 2012, P 24 INT S POW SEM D, P279