Comparison of realizations of Lie algebras

被引:0
作者
Nesterenko, Maryna [1 ]
Posta, Severin [2 ]
机构
[1] NAS Ukraine, Inst Math, 3 Tereshchenkivska Str, UA-01601 Kiev 4, Ukraine
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, CZ-12000 Prague, Czech Republic
来源
XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25) | 2018年 / 965卷
关键词
D O I
10.1088/1742-6596/965/1/012028
中图分类号
O59 [应用物理学];
学科分类号
摘要
The notion of equivalence of Lie algebra realizations is revisited and the quantities stable under the equivalence transformations are proposed. As a result we formulate a practical algorithm that allows to establish the existence of equivalence between any two realizations of a Lie algebra. Several illustrative examples are considered.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] REALIZATIONS OF CENTRAL EXTENSION OF INHOMOGENEOUS SYMPLECTIC ALGEBRA AS TIME-DEPENDENT INVARIANCE ALGEBRAS OF NONRELATIVISTIC QUANTUM SYSTEMS
    BURDET, G
    PERRIN, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (08) : 1692 - 1703
  • [2] A NEW CLASS OF REALIZATIONS OF THE LIE-ALGEBRA SO(Q, 2N-Q)
    BURDIK, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (02): : 289 - 295
  • [3] Transitive Lie Algebras of Vector Fields: An Overview
    Draisma, Jan
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) : 39 - 60
  • [4] Gromada D, 2017, MATHPH170300808V1
  • [5] Minimal realization of`l-conformal Galilei algebra, Pais-Uhlenbeck oscillators and their deformation
    Krivonos, Sergey
    Lechtenfeld, Olaf
    Sorin, Alexander
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [6] Lie S, 1890, THEORIE TRANSFORMATI, P1
  • [7] Lie S., 1888, Theorie der Transformationsgruppen, P1
  • [8] Lie S, 1893, THEORIE TRANSFORMATI, P1
  • [9] Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
    Magazev, Alexey A.
    Mikheyev, Vitaly V.
    Shirokov, Igor V.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [10] Realizations of Galilei algebras
    Nesterenko, Maryna
    Posta, Severin
    Vaneeva, Olena
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (11)