Phonon modes contribution in thermal rectification in graphene-C3B junction: A molecular dynamics study

被引:7
作者
Kiani, Leila [1 ]
Hasanzadeh, Javad [1 ]
Yousefi, Farrokh [2 ]
Anaraki, Peyman Azimi [1 ]
机构
[1] Islamic Azad Univ, Takestan Branch, Dept Phys, Takestan, Iran
[2] Univ Zanjan, Dept Phys, Zanjan, Iran
关键词
Thermal rectification; Graphene-C3B; Phonon modes; Molecular dynamics; INTERATOMIC POTENTIALS; GRAIN-BOUNDARY; CONDUCTIVITY; TRANSPORT;
D O I
10.1016/j.physe.2021.114724
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, using non-equilibrium molecular dynamics simulation, we implement a series of simulation under positive and negative temperature gradient in order to investigate the thermal rectification in the graphene-C3B junction (G-C3B). The dependence of thermal rectification on temperature difference between the hot and the cold baths is obtained. The important quantity that we present here, is the in-planes and out-of-plane phonon modes contribution in the thermal rectification. We see that the y mode has high and positive thermal rectification while that the x and z modes have small and negative thermal rectifications. Thermal rectification for y mode increases sharply beyond ?T > 30 K to -150% but for x and z modes decrease slowly by increasing ?T. Our results show that y mode has major role in the thermal rectification. Moreover, the underlying mechanisms that leads to the thermal rectification and also Kapitza resistance at the interface are studied via the phonon density of states (DOS).
引用
收藏
页数:6
相关论文
共 41 条
  • [1] Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations
    Alaghemandi, Mohammad
    Leroy, Frederic
    Algaer, Elena
    Boehm, Michael C.
    Mueller-Plathe, Florian
    [J]. NANOTECHNOLOGY, 2010, 21 (07)
  • [2] Kapitza thermal resistance across individual grain boundaries in graphene
    Azizi, Khatereh
    Hirvonen, Petri
    Fan, Zheyong
    Harju, Ari
    Elder, Ken R.
    Ala-Nissila, Tapio
    Allaei, S. Mehdi Vaez
    [J]. CARBON, 2017, 125 : 384 - 390
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [5] Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
    Britnell, L.
    Gorbachev, R. V.
    Jalil, R.
    Belle, B. D.
    Schedin, F.
    Mishchenko, A.
    Georgiou, T.
    Katsnelson, M. I.
    Eaves, L.
    Morozov, S. V.
    Peres, N. M. R.
    Leist, J.
    Geim, A. K.
    Novoselov, K. S.
    Ponomarenko, L. A.
    [J]. SCIENCE, 2012, 335 (6071) : 947 - 950
  • [6] Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath
    Chen, Jie
    Zhang, Gang
    Li, Baowen
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [7] Ambipolar Phosphorene Field Effect Transistor
    Das, Saptarshi
    Demarteau, Marcel
    Roelofs, Andreas
    [J]. ACS NANO, 2014, 8 (11) : 11730 - 11738
  • [8] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613
  • [9] Interfacial Thermal Resistance Mechanism for the Polyaniline (C3N)- Graphene Heterostructure
    Eshkalak, Kasra Einalipour
    Sadeghzadeh, Sadegh
    Molaei, Fatemeh
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (26) : 14316 - 14326
  • [10] Graphene-carbon nitride interface-geometry effects on thermal rectification: a molecular dynamics simulation
    Farzadian, O.
    Spitas, C.
    Kostas, K., V
    [J]. NANOTECHNOLOGY, 2021, 32 (21)