A Facile Microwave Hydrothermal Method for Fabricating SnO2@C/Graphene Composite With Enhanced Lithium Ion Storage Properties

被引:3
作者
Liu, Li-Lai [1 ,2 ,3 ]
Li, Ming-Yang [1 ]
Sun, Yi-Han [1 ]
Yang, Xue-Ying [1 ]
Ma, Min-Xuan [1 ]
Wang, Hui [1 ]
An, Mao-Zhong [2 ]
机构
[1] Heilongjiang Univ Sci & Technol, Coll Environm & Chem Engn, Harbin, Peoples R China
[2] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin, Peoples R China
[3] Baotailong New Mat Co Ltd, Jixi, Peoples R China
基金
美国国家科学基金会;
关键词
SnO2@C; graphene; porous structure; electrochemical performance; lithium-ion batteries; microwave hydrothermal; PERFORMANCE ANODE MATERIALS; CARBON NANOFIBERS; OXIDE COMPOSITE; GRAPHENE OXIDE; SNO2; NANOSHEETS; LIFE;
D O I
10.3389/fchem.2022.895749
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2@C/graphene ternary composite material has been prepared via a double-layer modified strategy of carbon layer and graphene sheets. The size, dispersity, and coating layer of SnO2@C are uniform. The SnO2@C/graphene has a typical porous structure. The discharge and charge capacities of the initial cycle for SnO2@C/graphene are 2,210 mAh g(-1) and 1,285 mAh g(-1), respectively, at a current density of 1,000 mA g(-1). The Coulombic efficiency is 58.60%. The reversible specific capacity of the SnO2@C/graphene anode is 955 mAh g(-1) after 300 cycles. The average reversible specific capacity still maintains 572 mAh g(-1) even at the high current density of 5 A g(-1). In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further investigate the prepared SnO2@C/graphene composite material by a microwave hydrothermal method. As a result, SnO2@C/graphene has demonstrated a better electrochemical performance.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Influence of Morphology and Structure on Electrochemical Performances of Li-Ion Battery Sn Anodes [J].
Chang, Chengshuai ;
Liu, Lian ;
Wang, Shulan ;
Li, Li ;
Liu, Xuan .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (12) :5930-5935
[2]  
Cheng H, 2021, J ENERGY CHEM, V57, P451, DOI [10.1016/j.jechem.2020.08.0562095-4956/, 10.1016/j.jechem.2020.08.056]
[3]   SnO and SnO•CoO nanocomposite as high capacity anode materials for lithium ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Chowdari, B. V. R. .
MATERIALS RESEARCH BULLETIN, 2016, 74 :291-298
[4]   Carbon coated SnO2 particles stabilized in the elastic network of carbon nanofibers and its improved electrochemical properties [J].
Ding, Jingjing ;
Lu, Zhongpei ;
Wu, Manman ;
Liu, Cong ;
Yang, Yang ;
Ji, Hongmei ;
Yang, Gang .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 215 :285-292
[5]   Mo-Doped SnO2 Nanoparticles Embedded in Ultrathin Graphite Nanosheets as a High-Reversible-Capacity, Superior-Rate, and Long-Cycle-Life Anode Material for Lithium-Ion Batteries [J].
Feng, Yefeng ;
Wu, Kaidan ;
Sun, Yukun ;
Guo, Zhiling ;
Ke, Jin ;
Huang, Xiping ;
Bai, Chen ;
Dong, Huafeng ;
Xiong, Deping ;
He, Miao .
LANGMUIR, 2020, 36 (31) :9276-9283
[6]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[7]   Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries [J].
Gao, Feng ;
Qin, Shi-hui ;
Zang, Yun-hao ;
Gu, Jian-feng ;
Qu, Jiang-ying .
NEW CARBON MATERIALS, 2020, 35 (02) :121-130
[8]   Surface-Functionalized Graphite as Long Cycle Life Anode Materials for Lithium-Ion Batteries [J].
Gong, Xiaohui ;
Zheng, Yuanbo ;
Zheng, Jiang ;
Cao, Shengping ;
Wen, Hui ;
Lin, Baoping ;
Sun, Yueming .
CHEMELECTROCHEM, 2020, 7 (06) :1465-1472
[9]   A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries [J].
He, Wei ;
Liang, Yujia ;
Tian, Huajun ;
Zhang, Shunlong ;
Meng, Zhen ;
Han, Wei-Qiang .
ENERGY STORAGE MATERIALS, 2017, 8 :119-126
[10]   Light-Motivated SnO2/TiO2 Heterojunctions Enabling the Breakthrough in Energy Density for Lithium-Ion Batteries [J].
Hu, Chen ;
Chen, Ling ;
Hu, Yanjie ;
Chen, Aiping ;
Chen, Long ;
Jiang, Hao ;
Li, Chunzhong .
ADVANCED MATERIALS, 2021, 33 (49)