Structure of Porous Copper Prussian Blue Analogues: Nature of Their High H2 Storage Capacity

被引:46
作者
Jimenez-Gallegos, J. [1 ]
Rodriguez-Hernandez, J. [1 ,3 ]
Yee-Madeira, H. [2 ]
Reguera, E. [1 ,3 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Mexico City, DF, Mexico
[2] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City, DF, Mexico
[3] Univ La Habana, Inst Ciencia & Tecnol Mat, Havana, Cuba
关键词
METAL-ORGANIC FRAMEWORK; HYDROGEN STORAGE; NEUTRON-DIFFRACTION; MOSSBAUER-SPECTRA; ADSORPTION; COORDINATION; CO;
D O I
10.1021/jp910544j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within Porous Prussian blue to copper the highest H-2 storage capacity is observed. Such behavior finds explanation in the crystal structure for Cu-3[M(CN)(6)](2) With M = Fe, Co, Ir. The crystal Structure of Prussian blue analogues is usually solved and refined with a cubic unit cell in the Fm (3) over barm space group, which corresponds to a random vacancy distribution. However. a careful evaluation of X-ray diffraction powder patterns of copper-containing compositions reveals a deviation from that structural model. The crystal structure for the considered series of copper hexacyanometallates(111) was found to be also Cubic but in the Pm (3) over barm space group related to a nonrandom vacancy distribution. To this model 50% of vacancies for the building block, [M(CN)(6)], corresponds, which is quite different front the value of 33.3% in the Fm (3) over barm structural model. Mossbauer spectra and high pressure H-2 adsorption isotherms support the assignment of the Pm (3) over barm space group for the Studied series of copper Prussian blue analogues. The implications of a nonrandom vacancy distribution on the physical properties of these materials are discussed.
引用
收藏
页码:5043 / 5048
页数:6
相关论文
共 28 条
  • [1] Porous framework of T2[Fe(CN)6]•xH2O with T = Co, Ni, Cu, Zn, and H2 storage
    Avila, M.
    Reguera, L.
    Rodriguez-Hernandez, J.
    Balmaseda, J.
    Reguera, E.
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (11) : 2899 - 2907
  • [2] CRYSTAL-STRUCTURE OF PRUSSIAN BLUE - FE4[FE(CN)6]3.XH2O
    BUSER, HJ
    SCHWARZENBACH, D
    PETTER, W
    LUDI, A
    [J]. INORGANIC CHEMISTRY, 1977, 16 (11) : 2704 - 2710
  • [3] Reversible hydrogen gas uptake in nanoporous Prussian Blue analogues
    Chapman, KW
    Southon, PD
    Weeks, CL
    Kepert, CJ
    [J]. CHEMICAL COMMUNICATIONS, 2005, (26) : 3322 - 3324
  • [4] Cu2(ATC)•6H2O:: Design of open metal sites in porous metal-organic crystals (ATC:1,3,5,7-adamantane tetracarboxylate)
    Chen, BL
    Eddaoudi, M
    Reineke, TM
    Kampf, JW
    O'Keeffe, M
    Yaghi, OM
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (46) : 11559 - 11560
  • [5] High H2 adsorption in a microporous metal-organic framework with open metal sites
    Chen, BL
    Ockwig, NW
    Millward, AR
    Contreras, DS
    Yaghi, OM
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) : 4745 - 4749
  • [6] Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites
    Dinca, Mircea
    Dailly, Anne
    Liu, Yun
    Brown, Craig M.
    Neumann, Dan. A.
    Long, Jeffrey R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) : 16876 - 16883
  • [7] Hydrogen adsorption in nanoporous Nickel(II) phosphates
    Forster, PM
    Eckert, J
    Chang, JS
    Park, SE
    Férey, G
    Cheetham, AK
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (05) : 1309 - 1312
  • [8] Goldanskii V.I., 1968, CHEM APPL MOSSBAUER
  • [9] Neutron diffraction and neutron vibrational sectroscopy studies of hydrogen adsorption in the Prussian blue analogue Cu3[Co(CN)6]2
    Hartman, Michael R.
    Peterson, Vanessa K.
    Liu, Yun
    Kaye, Steven S.
    Long, Jeffrey R.
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (14) : 3221 - 3224
  • [10] NEUTRON-DIFFRACTION STUDY OF PRUSSIAN BLUE, FE4[FE(CN)6]3.XH2O - LOCATION OF WATER-MOLECULES AND LONG-RANGE MAGNETIC ORDER
    HERREN, F
    FISCHER, P
    LUDI, A
    HALG, W
    [J]. INORGANIC CHEMISTRY, 1980, 19 (04) : 956 - 959