Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route

被引:79
作者
Cabana, J.
Valdes-Solis, T.
Palacin, M. R.
Oro-Sole, J.
Fuertes, A.
Marban, G.
Fuertes, A. B.
机构
[1] CSIC, Inst Nacl Carbon, Oviedo 33011, Spain
[2] CSIC, Inst Ciencia Mat Barcelona, E-08193 Bellaterra, Catalonia, Spain
关键词
lithium batteries; LiMn2O4; lithium manganese spinel; template method; silica gel;
D O I
10.1016/j.jpowsour.2006.12.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nanosized LiMn2O4 (nano-LiMn2O4) spinel was prepared by a novel route using a porous silica gel as a sacrificial hard template. This material was found to be made up of 8-20 nm nanoparticles with a mean crystallite size of 15 mn. The electrochemical properties of nano-LiMn2O4 were tested in lithium cells at different cycling rates and compared to those of microsized LiMn2O4 (micro-LiMn2O4) obtained by the classical solid state route. Microsized LiMn2O4 is formed by 3-20 mu m agglomerates, the size of each individual particle being approximately 0.20 mu m. The behaviour of nano-LiMn2O4 as a positive electrode improves with increasing current densities (from C/20 to 2C). Moreover, it was found to exhibit a noticeably better performance at high rates (2C), with higher initial capacity values and very good retention (only 2% loss after 30 cycles), with respect to micro-LiMn2O4, almost certainly due to enhanced lithium diffusion in the small particles. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:492 / 498
页数:7
相关论文
共 35 条
[11]   Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 v Li/LixMn2O4 rechargeable cells [J].
Jang, DH ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (10) :3342-3348
[12]   Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides [J].
Julien, CM ;
Massot, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 100 (01) :69-78
[13]   Synthesizing nanocrystalline LiMn2O4 by a combustion route [J].
Kovacheva, D ;
Gadjov, H ;
Petrov, K ;
Mandal, S ;
Lazarraga, MG ;
Pascual, L ;
Amarilla, JM ;
Rojas, RM ;
Herrero, P ;
Rojo, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (04) :1184-1188
[14]   Inorganic nanocrystalline and hybrid nanocrystalline particles (gamma-Fe2O3/PPY) and their contribution to electrode materials for lithium batteries [J].
Kwon, CW ;
Quintin, M ;
Mornet, S ;
Barbieri, C ;
Devos, O ;
Campet, G ;
Delville, MH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) :A1445-A1449
[15]   Effect of particle size on lithium intercalation into α-Fe2O3 [J].
Larcher, D ;
Masquelier, C ;
Bonnin, D ;
Chabre, Y ;
Masson, V ;
Leriche, JB ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) :A133-A139
[16]   Nanocasting pathways to create ordered mesoporous solids [J].
Lu, AH ;
Schüth, F .
COMPTES RENDUS CHIMIE, 2005, 8 (3-4) :609-620
[17]   Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis [J].
Matsuda, K ;
Taniguchi, I .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :156-160
[18]  
Nagaura T., 1990, PROG BATT SOLAR CELL, V9
[19]   Improvement of the cycleability of nano-crystalline lithium manganate cathodes by cation co-doping [J].
Nieto, S ;
Majumder, SB ;
Katiyar, RS .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :88-98
[20]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499