A Second-Order Difference Scheme for a Singularly Perturbed Reaction-Diffusion Problem

被引:1
作者
Attili, Basem S. [1 ]
机构
[1] Sharjah Univ, Dept Math, Sharjah, U Arab Emirates
来源
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS | 2013年 / 47卷
关键词
Reaction-diffusion; Three-point BVPs; Finite difference; Singularly perturbed; Exponentially fitted scheme; NUMERICAL-METHOD;
D O I
10.1007/978-1-4614-7333-6_17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed one-dimensional reaction-diffusion three-point boundary value problem. To approximate the solution numerically, we employ an exponentially fitted finite uniform difference scheme defined on a piecewise uniform Shishkin mesh which is second order and uniformly convergent independent of the perturbation parameter. We will present some numerical examples to show the efficiency of the proposed method.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 16 条
[1]   Numerical treatment of singularly perturbed two point boundary value problems exhibiting boundary layers [J].
Attili, Basem S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3504-3511
[2]   A numerical algorithm for some singularly perturbed boundary value problems [J].
Attili, BS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 184 (02) :464-474
[3]  
BERGER AE, 1984, MATH COMPUT, V42, P465, DOI 10.1090/S0025-5718-1984-0736447-2
[4]   Numerical solution of a singularly perturbed three-point boundary value problem [J].
Cakir, M. ;
Amiraliyev, G. M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (10) :1465-1481
[5]  
Doolan EP., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[6]   A BOUNDARY-VALUE METHOD FOR A CLASS OF NONLINEAR SINGULAR PERTURBATION PROBLEMS [J].
KADALBAJOO, MK ;
REDDY, YN .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (04) :587-594
[7]  
Natesan N., 2007, J NUMER ANAL IND APP, V2, P117
[8]   Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers [J].
Natesan, S ;
Jayakumar, J ;
Vigo-Aguiar, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :121-134
[9]  
Nayfeh AH., 1993, Introduction to Perturbation Techniques
[10]  
O'Malley R. E., 1974, Introduction to singular perturbations