Stability of abstract dynamic equations on time scales by Lyapunov's second method

被引:9
作者
Hamza, Alaa [1 ,2 ]
Oraby, Karima [3 ]
机构
[1] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Cairo Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Suez Univ, Fac Sci, Dept Math, Suez, Egypt
关键词
Lyapunov stability theory; dynamic equations; time scales; SYSTEMS;
D O I
10.3906/mat-1703-65
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the Lyapunov's second method to obtain new sufficient conditions for many types of stability like exponential stability, uniform exponential stability, h-stability, and uniform h-stability of the nonlinear dynamic equation x(Delta)(t) = A(t)x(t) + f (t, x), t is an element of T-tau(+) := [tau, infinity)(T), on a time scale T, where A is an element of C-rd(T, L(X)) and f : T x X -> X is rd-continuous in the first argument with f(t, 0) = 0. Here X is a Banach space. We also establish sufficient conditions for the nonhomogeneous particular dynamic equation x(Delta)(t) = A(t)x(t) + f (t), t is an element of T-tau(+), to be uniformly exponentially stable or uniformly h-stable, where f is an element of C-rd(T, X), the space of rd-continuous functions from T to X. We construct a Lyapunov function and we make use of this function to obtain our stability results. Finally, we give illustrative examples to show the applicability of the theoretical results.
引用
收藏
页码:841 / 861
页数:21
相关论文
共 50 条
  • [1] CHARACTERIZATIONS OF STABILITY OF ABSTRACT DYNAMIC EQUATIONS ON TIME SCALES
    Hamza, Alaa E.
    Oraby, Karima M.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 185 - 202
  • [2] Stability of abstract dynamic equations on time scales
    Hamza, Alaa E.
    Oraby, Karima M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [3] Lyapunov Stability of Quasilinear Implicit Dynamic Equations on Time Scales
    Du, N. H.
    Liem, N. C.
    Chyan, C. J.
    Lin, S. W.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [4] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Neggal, Bilel
    Boukerrioua, Khaled
    Kilani, Brahim
    Meziri, Imen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1017 - 1031
  • [5] Algebraic and Dynamic Lyapunov Equations on Time Scales
    Davis, John M.
    Gravagne, Ian A.
    Marks, Robert J., II
    Ramos, Alice A.
    2010 42ND SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 2010,
  • [6] LYAPUNOV EXPONENTS FOR DYNAMIC EQUATIONS ON TIME SCALES
    Nguyen, K. C.
    Nhung, T., V
    Anh Hoa, T. T.
    Liem, N. C.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (02): : 367 - 386
  • [7] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Bilel Neggal
    Khaled Boukerrioua
    Brahim Kilani
    Imen Meziri
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1017 - 1031
  • [8] QUALITATIVE ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES USING LYAPUNOV FUNCTIONS
    Messina, Eleonora
    Raffoul, Youssef
    Vecchio, Antonia
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (02): : 215 - 226
  • [9] Semigroups of operators and abstract dynamic equations on time scales
    Hamza, Alaa E.
    Oraby, Karima M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 334 - 348
  • [10] Stability criteria for set dynamic equations on time scales
    Hong, Shihuang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) : 3444 - 3457