Fabrication of Fe3O4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water

被引:87
作者
Ding, Jie [1 ]
Li, Baojun [1 ]
Liu, Yushan [1 ]
Yan, Xiaoshe [1 ]
Zeng, Sha [1 ]
Zhang, Xudong [1 ]
Hou, Lifen [1 ]
Cai, Qiang [2 ,3 ]
Zhang, Jianmin [1 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China
[2] Tsinghua Univ, Key Lab Adv Mat, Minist Educ, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Coll Mat Sci & Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
FE3O4; NANOPARTICLES; ARSENIC REMOVAL; PERFORMANCE; SHEETS; HYBRID; NANOSTRUCTURES; NANOMATERIALS; NANOTUBES; GRAPHITE; CR(VI);
D O I
10.1039/c4ta04297b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a facile and delicate method was used to fabricate functional graphene-based nanocomposite material, Fe3O4@reduced graphene oxide composite (FGNC), triggered by the pre-designed colloid electrostatic self-assembly between the positively charged Fe(OH)(3) colloid nanoparticles and the negatively charged graphene oxide (GO) nanosheets. Imaged by SEM and TEM, irregular spherical Fe3O4 nanoparticles with diameters of 10-20 nm were dispersed and loaded uniformly onto the surfaces of reduced graphene oxide (rGO) sheets. The identity of FGNC was further proved by FT-IR, Raman, XRD, and XPS analysis. Moreover, because of the excellent behavior of the simulated removal of organic contaminant (rhodamine B) or inorganic contaminant (As(V)) from water, FGNC displayed good application prospects in waste water treatment.
引用
收藏
页码:832 / 839
页数:8
相关论文
共 67 条
[31]   Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas [J].
Luo, Bin ;
Liu, Shaomin ;
Zhi, Linjie .
SMALL, 2012, 8 (05) :630-646
[32]   Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More [J].
Lv, Ruitao ;
Cruz-Silva, Eduardo ;
Terrones, Mauricio .
ACS NANO, 2014, 8 (05) :4061-4069
[33]   25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices [J].
Maiti, Uday Narayan ;
Lee, Won Jun ;
Lee, Ju Min ;
Oh, Youngtak ;
Kim, Ju Young ;
Kim, Ji Eun ;
Shim, Jongwon ;
Han, Tae Hee ;
Kim, Sang Ouk .
ADVANCED MATERIALS, 2014, 26 (01) :40-67
[34]   Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode [J].
Mao, Lu ;
Zhang, Kai ;
Chan, Hardy Sze On ;
Wu, Jishan .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :80-85
[35]   A new route for the synthesis of graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposites and their Schottky diode applications [J].
Metin, Onder ;
Aydogan, Sakir ;
Meral, Kadem .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 585 :681-688
[36]   Fine structure constant defines visual transparency of graphene [J].
Nair, R. R. ;
Blake, P. ;
Grigorenko, A. N. ;
Novoselov, K. S. ;
Booth, T. J. ;
Stauber, T. ;
Peres, N. M. R. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5881) :1308-1308
[37]   The production of smectite clay/graphene composites through delamination and co-stacking [J].
Nethravathi, C. ;
Viswanath, B. ;
Shivakumara, C. ;
Mahadevaiah, N. ;
Rajamathi, M. .
CARBON, 2008, 46 (13) :1773-1781
[38]   Graphene thickness determination using reflection and contrast spectroscopy [J].
Ni, Z. H. ;
Wang, H. M. ;
Kasim, J. ;
Fan, H. M. ;
Yu, T. ;
Wu, Y. H. ;
Feng, Y. P. ;
Shen, Z. X. .
NANO LETTERS, 2007, 7 (09) :2758-2763
[39]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[40]   Facile fabrication of α-FeOOH nanorod/RGO composite: a robust photocatalyst for reduction of Cr(VI) under visible light irradiation [J].
Padhi, Deepak Kumar ;
Parida, Kulamani .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) :10300-10312