Level dynamics for conservative and dissipative quantum systems

被引:8
作者
Kus, M
Haake, F
Zaitsev, D
Huckleberry, A
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany
[3] Ruhr Univ Bochum, Inst Math, D-44780 Bochum, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 24期
关键词
D O I
10.1088/0305-4470/30/24/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish level dynamics for finite matrices, employing a unified treatment of real symmetric, complex Hermitian, quaternion real, unitary, and arbitrary complex matrices. In all cases the level dynamics take the form of the classical Hamiltonian Bow of some fictitious many-particle systems. Equilibrium statistical mechanics of the latter leads to the well known matrix ensembles of random-matrix theory. Ginibre's ensemble, in particular, is thus associated with level dynamics of arbitrary complex matrices.
引用
收藏
页码:8635 / 8651
页数:17
相关论文
共 26 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], 1980, MATH METHODS CLASSIC
[3]  
[Anonymous], 2013, MATRIX ANAL
[4]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[5]   RANDOM-MATRIX THEORY AND EQUILIBRIUM STATISTICS FOR THE QUASI-ENERGIES OF CLASSICALLY CHAOTIC SYSTEMS [J].
DIETZ, B .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 96 (02) :271-278
[6]   RANDOM MATRIX-THEORY AS STATISTICAL-MECHANICS [J].
DIETZ, B ;
HAAKE, F .
EUROPHYSICS LETTERS, 1989, 9 (01) :1-6
[7]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[8]  
FLANDERS H, 1963, DIFFERENTIAL FORMS
[9]   Almost Hermitian random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics [J].
Fyodorov, YV ;
Khoruzhenko, BA ;
Sommers, HJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :557-560
[10]   Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance [J].
Fyodorov, YV ;
Sommers, HJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (04) :1918-1981