Smart construction of polyaniline shell on cobalt oxides as integrated core-shell arrays for enhanced lithium ion batteries

被引:16
作者
Qi, Meili [1 ]
Xie, Dong [2 ]
Zhong, Yu [2 ]
Chen, Minghua [1 ]
Xia, Xinhui [2 ]
机构
[1] Harbin Univ Sci & Technol, Minist Educ, Key Lab Engn Dielect & Applicat, Sch Appl Sci, Harbin 150080, Heilongjiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金; 黑龙江省自然科学基金;
关键词
Lithium ion batteries; Cobalt oxide; Core-shell structure; Polyaniline layer; Nanorod arrays; PERFORMANCE ANODE MATERIAL; NANOWIRE ARRAYS; CO3O4;
D O I
10.1016/j.electacta.2017.07.031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Smart construction of advanced anode materials is extremely critical to develop high-performance lithium ion batteries. In this work, we have reported a facile strategy for fabricating Co3O4/polyaniline (PANI) core-shell arrays (CSAs) by chemical bath deposition (CBD) + electrodeposition methods Electrodeposited PANI shell is intimately decorated on the CBD-Co3O4 nanorods forming composite CSAs. Highly conductive network and stress buffer layer are achieved with the aid of tailored PANI shell. Due to these advantages above, the designed Co3O4/PANI CSAS exhibit good electrochemical performance with higher reversible capacity (787 mAh g (1)) and better cycle stability than the unmodified Co3O4 counterpart. Our results show a new way for preparing advanced inorganic-organic composite electrodes for electrochemical energy storage. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:701 / 707
页数:7
相关论文
共 44 条
[11]   THE RAMAN-SPECTRA OF CO3O4 [J].
HADJIEV, VG ;
ILIEV, MN ;
VERGILOV, IV .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (07) :L199-L201
[12]   Facile synthesis of core shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors [J].
Hai, Zhenyin ;
Gao, Libo ;
Zhang, Qiang ;
Xu, Hongyan ;
Cui, Danfeng ;
Zhang, Zengxing ;
Tsoukalas, Dimitris ;
Tang, Jun ;
Yan, Shubin ;
Xue, Chenyang .
APPLIED SURFACE SCIENCE, 2016, 361 :57-62
[13]  
Hu YY, 2013, NAT MATER, V12, P1130, DOI [10.1038/NMAT3784, 10.1038/nmat3784]
[14]   Nanocrystal-Constructed Mesoporous Single-Crystalline Co3O4 Nanobelts with Superior Rate Capability for Advanced Lithium-Ion Batteries [J].
Huang, Hui ;
Zhu, Wenjun ;
Tao, Xinyong ;
Xia, Yang ;
Yu, Zhaoyang ;
Fang, Junwu ;
Gan, Yongping ;
Zhang, Wenkui .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) :5974-5980
[15]  
Islam S., 2013, INT J POLYM SCI, V2013, P8062
[16]   A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery [J].
Kang, YM ;
Song, MS ;
Kim, JH ;
Kim, HS ;
Park, MS ;
Lee, JY ;
Liu, HK ;
Dou, SX .
ELECTROCHIMICA ACTA, 2005, 50 (18) :3667-3673
[17]   One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage [J].
Li, L. ;
Zhang, Y. Q. ;
Liu, X. Y. ;
Shi, S. J. ;
Zhao, X. Y. ;
Zhang, H. ;
Ge, X. ;
Cai, G. F. ;
Gu, C. D. ;
Wang, X. L. ;
Tu, J. P. .
ELECTROCHIMICA ACTA, 2014, 116 :467-474
[18]   Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes [J].
Li, Xiuwan ;
Li, Dan ;
Wei, Zhiwei ;
Shang, Xiaonan ;
He, Deyan .
ELECTROCHIMICA ACTA, 2014, 121 :415-420
[19]   Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J].
Nam, KT ;
Kim, DW ;
Yoo, PJ ;
Chiang, CY ;
Meethong, N ;
Hammond, PT ;
Chiang, YM ;
Belcher, AM .
SCIENCE, 2006, 312 (5775) :885-888
[20]  
Padwal P. M., 2015, J CHINESE ADV MAT SO, V4, P1