Smart construction of polyaniline shell on cobalt oxides as integrated core-shell arrays for enhanced lithium ion batteries

被引:16
作者
Qi, Meili [1 ]
Xie, Dong [2 ]
Zhong, Yu [2 ]
Chen, Minghua [1 ]
Xia, Xinhui [2 ]
机构
[1] Harbin Univ Sci & Technol, Minist Educ, Key Lab Engn Dielect & Applicat, Sch Appl Sci, Harbin 150080, Heilongjiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金; 黑龙江省自然科学基金;
关键词
Lithium ion batteries; Cobalt oxide; Core-shell structure; Polyaniline layer; Nanorod arrays; PERFORMANCE ANODE MATERIAL; NANOWIRE ARRAYS; CO3O4;
D O I
10.1016/j.electacta.2017.07.031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Smart construction of advanced anode materials is extremely critical to develop high-performance lithium ion batteries. In this work, we have reported a facile strategy for fabricating Co3O4/polyaniline (PANI) core-shell arrays (CSAs) by chemical bath deposition (CBD) + electrodeposition methods Electrodeposited PANI shell is intimately decorated on the CBD-Co3O4 nanorods forming composite CSAs. Highly conductive network and stress buffer layer are achieved with the aid of tailored PANI shell. Due to these advantages above, the designed Co3O4/PANI CSAS exhibit good electrochemical performance with higher reversible capacity (787 mAh g (1)) and better cycle stability than the unmodified Co3O4 counterpart. Our results show a new way for preparing advanced inorganic-organic composite electrodes for electrochemical energy storage. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:701 / 707
页数:7
相关论文
共 44 条
[1]   Morphology and thermo-mechanical properties of compatibilized polyimide-silica nanocomposites [J].
Al-Kandary, S ;
Ali, AAM ;
Ahmad, Z .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (06) :2521-2531
[2]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[3]   Quantitative characterization of polyaniline films using Raman spectroscopy I: Polaron lattice and bipolaron [J].
Bernard, M. C. ;
Hugot-Le Goff, A. .
ELECTROCHIMICA ACTA, 2006, 52 (02) :595-603
[4]   Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries [J].
Chandran, T. Mani ;
Balaji, S. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (06) :3220-3226
[5]  
Chen M., 2015, MAT RES B, V73, P125
[6]   Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire [J].
Chen, Min ;
Zou, Yatao ;
Wu, Linzhong ;
Pan, Qi ;
Yang, Di ;
Hu, Huicheng ;
Tan, Yeshu ;
Zhong, Qixuan ;
Xu, Yong ;
Liu, Haiyu ;
Sun, Baoquan ;
Zhang, Qiao .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
[7]   Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries [J].
Chen, Minghua ;
Xia, Xinhui ;
Yin, Jinghua ;
Chen, Qingguo .
ELECTROCHIMICA ACTA, 2015, 160 :15-21
[8]   3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries [J].
Choi, Bong Gill ;
Chang, Sung-Jin ;
Lee, Young Boo ;
Bae, Jong Seong ;
Kim, Hae Jin ;
Huh, Yun Suk .
NANOSCALE, 2012, 4 (19) :5924-5930
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit [J].
Geng, Joaquin ;
Bonnet, Jean-Pierre ;
Renault, Steven ;
Dolhem, Franck ;
Poizot, Philippe .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (12) :1929-1933