Design and Analysis of Si Interconnects for All-Spin Logic

被引:26
作者
Chang, Sou-Chi [1 ]
Manipatruni, Sasikanth [2 ]
Nikonov, Dmitri E. [2 ]
Young, Ian A. [2 ]
Naeemi, Azad [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Intel Corp, Components Res, Hillsboro, OR 97124 USA
关键词
All-spin logic (ASL); interconnects; non-equilibrium Green's function (NEGF); spin-transfer-torque; PHOSPHORUS-DOPED SILICON; INJECTION; TRANSPORT; ELECTRONS; ACCUMULATION; RESONANCE; DEVICE;
D O I
10.1109/TMAG.2014.2325536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An Si spin interconnect for all-spin logic (ASL) is analyzed by a comprehensive physical model, including spin injection, spin transport, and stochastic magnetization dynamics. It is shown that the spin current density and spin polarization of the current can be improved by changing material properties, interface conditions, and structure dimensions. Furthermore, with the help of an electric field, spin information can preserve and propagate between magnets in a highly doped micrometer-scale Si channel. Different from metallic ASL, instead of the short spin relaxation length, the main constraint of an Si spin interconnect is the high bias voltage required to minimize the energy-delay product (EDP). The minimum EDP and corresponding bias voltage can be reduced significantly by downscaling the nanomagnet. This improvement in the magnetic response allows Si to provide a compatible low-power interconnect technology to metallic ASL.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Switching energy-delay of all spin logic devices [J].
Behin-Aein, Behtash ;
Sarkar, Angik ;
Srinivasan, Srikant ;
Datta, Supriyo .
APPLIED PHYSICS LETTERS, 2011, 98 (12)
[2]  
Behin-Aein B, 2010, NAT NANOTECHNOL, V5, P266, DOI [10.1038/nnano.2010.31, 10.1038/NNANO.2010.31]
[3]   The equivalent ellipsoid of a magnetized body [J].
Beleggia, M ;
De Graef, M ;
Millev, YT .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (05) :891-899
[4]   Non-collinear magnetoelectronics [J].
Brataas, A ;
Bauer, GEW ;
Kelly, PJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 427 (04) :157-255
[5]   Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures [J].
Bratkovsky, A. M. .
REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (02)
[6]   Tunneling of electrons in conventional and half-metallic systems: Towards very large magnetoresistance [J].
Bratkovsky, AM .
PHYSICAL REVIEW B, 1997, 56 (05) :2344-2347
[7]   THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE [J].
BROWN, WF .
PHYSICAL REVIEW, 1963, 130 (05) :1677-+
[8]   Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches -: art. no. 054416 [J].
Butler, WH ;
Zhang, XG ;
Schulthess, TC ;
MacLaren, JM .
PHYSICAL REVIEW B, 2001, 63 (05)
[9]   Static and Clocked Spintronic Circuit Design and Simulation With Performance Analysis Relative to CMOS [J].
Calayir, Vehbi ;
Nikonov, Dmitri E. ;
Manipatruni, Sasikanth ;
Young, Ian A. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (02) :393-406
[10]   The effects of Schottky barrier profile on spin dependent tunneling in a ferromagnet-insulator-semiconductor system [J].
Chung, N. L. ;
Jalil, M. B. A. ;
Tan, S. G. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)