Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21-22 August 2017

被引:88
作者
Ansmann, Albert [1 ]
Baars, Holger [1 ]
Chudnovsky, Alexandra [2 ]
Mattis, Ina [3 ]
Veselovskii, Igor [4 ]
Haarig, Moritz [1 ]
Seifert, Patric [1 ]
Engelmann, Ronny [1 ]
Wandinger, Ulla [1 ]
机构
[1] Leibniz Inst Tropospher Res, Leipzig, Germany
[2] Tel Aviv Univ, Porter Sch Earth Sci & Environm, Tel Aviv, Israel
[3] Observ Hohenpeissenberg, German Weather Serv, Hohenpeissenberg, Germany
[4] Gen Phys Inst, Phys Instrumentat Ctr, Moscow, Russia
基金
俄罗斯科学基金会; 欧盟地平线“2020”;
关键词
FOREST-FIRE SMOKE; LIDAR OBSERVATIONS; OPTICAL DEPTH; GARMISCH-PARTENKIRCHEN; SATELLITE MEASUREMENTS; RAMAN-POLARIZATION; AEROSOL PROPERTIES; TRANSPORT; BACKSCATTER; TROPOSPHERE;
D O I
10.5194/acp-18-11831-2018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Light extinction coefficients of 500 Mm(-1), about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by European Aerosol Research Lidar Network (EARLINET) lidars in the stratosphere over central Europe on 21-22 August 2017. Pronounced smoke layers with a 1-2 km vertical extent were found 2-5 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after their injection into the upper troposphere and lower stratosphere which was caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) identified by lidar was close to 1.0 at 532 nm over Leipzig during the noon hours on 22 August 2017. Smoke particles were found throughout the free troposphere (AOT of 0.3) and in the pronounced 2 km thick stratospheric smoke layer at an altitude of 14-16 km (AOT of 0.6). The lidar observations indicated peak mass concentrations of 70-100 mu g m(-3) in the stratosphere. In addition to the lidar profiles, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) over Canada, and the distribution of MODIS AOT and Ozone Monitoring Instrument (OMI) aerosol index across the North Atlantic. These instruments showed a similar pattern and a clear link between the western Canadian fires and the aerosol load over Europe. In this paper, we also present Aerosol Robotic Network (AERONET) sun photometer observations, compare photometer and lidar-derived AOT, and discuss an obvious bias (the smoke AOT is too low) in the photometer observations. Finally, we compare the strength of this record-breaking smoke event (in terms of the particle extinction coefficient and AOT) with major and moderate volcanic events observed over the northern midlatitudes.
引用
收藏
页码:11831 / 11845
页数:15
相关论文
共 65 条
[1]  
Acker J.G., 2007, Eos Trans. Am. Geophys. Union, V88, P14, DOI [10.1029/2007EO020003, DOI 10.1029/2007EO020003]
[2]   Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization [J].
Althausen, Dietrich ;
Engelmann, Ronny ;
Baars, Holger ;
Heese, Birgit ;
Ansmann, Albert ;
Mueller, Detlef ;
Komppula, Mika .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (11) :2366-2378
[3]  
[Anonymous], 2009, ELECT J DIFFERENTIAL, DOI DOI 10.1371/J0URNAL.P0NE.0106787
[4]  
Ansmann A, 1997, J ATMOS SCI, V54, P2630, DOI 10.1175/1520-0469(1997)054<2630:EOTPAR>2.0.CO
[5]  
2
[6]   An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling [J].
Baars, Holger ;
Kanitz, Thomas ;
Engelmann, Ronny ;
Althausen, Dietrich ;
Heese, Birgit ;
Komppula, Mika ;
Preissler, Jana ;
Tesche, Matthias ;
Ansmann, Albert ;
Wandinger, Ulla ;
Lim, Jae-Hyun ;
Ahn, Joon Young ;
Stachlewska, Iwona S. ;
Amiridis, Vassilis ;
Marinou, Eleni ;
Seifert, Patric ;
Hofer, Julian ;
Skupin, Annett ;
Schneider, Florian ;
Bohlmann, Stephanie ;
Foth, Andreas ;
Bley, Sebastian ;
Pfuller, Anne ;
Giannakaki, Eleni ;
Lihavainen, Heikki ;
Viisanen, Yrjo ;
Hooda, Rakesh Kumar ;
Pereira, Sergio Nepomuceno ;
Bortoli, Daniele ;
Wagner, Frank ;
Mattis, Ina ;
Janicka, Lucja ;
Markowicz, Krzysztof M. ;
Achtert, Peggy ;
Artaxo, Paulo ;
Pauliquevis, Theotonio ;
Souza, Rodrigo A. F. ;
Sharma, Ved Prakesh ;
van Zyl, Pieter Gideon ;
Beukes, Johan Paul ;
Sun, Junying ;
Rohwer, Erich G. ;
Deng, Ruru ;
Mamouri, Rodanthi-Elisavet ;
Zamorano, Felix .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (08) :5111-5137
[7]   Lidar measurements of stratospheric aerosol over Mauna Loa Observatory [J].
Barnes, JE ;
Hofmann, DJ .
GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (15) :1923-1926
[8]   Giovanni: A Web Service Workflow-Based Data Visualization and Analysis System [J].
Berrick, Stephen W. ;
Leptoukh, Gregory ;
Farley, John D. ;
Rui, Hualan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (01) :106-113
[9]   Lifting potential of solar-heated aerosol layers [J].
Boers, R. ;
de Laat, A. T. ;
Zweers, D. C. Stein ;
Dirksen, R. J. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[10]   Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis [J].
Buchard, V. ;
da Silva, A. M. ;
Colarco, P. R. ;
Darmenov, A. ;
Randles, C. A. ;
Govindaraju, R. ;
Torres, O. ;
Campbell, J. ;
Spurr, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) :5743-5760