Optimized design of silver nanoparticles for broadband and high efficiency light trapping in thin film solar cells

被引:0
作者
Wang, Zhiye [1 ]
Wang, Shuying [1 ]
Jiang, Yue [1 ]
Zhou, Hua [2 ]
Tuokedaerhan, Kamale [1 ]
Chen, Yanhua [1 ]
Shen, Xiangqian [1 ]
机构
[1] Xinjiang Univ, Sch Phys Sci & Technol, Urumqi 830046, Peoples R China
[2] Shandong Univ, Sch Phys, 27 Shanda Nanlu, Jinan 250100, Shandong, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 13期
关键词
Solar cells; light trapping; plasmonic scattering; optical properties; NANOSTRUCTURES;
D O I
10.1142/S0217984921502249
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports a high-efficiency approach to improve the photoelectric-conversion efficiency of thin-film solar cells by plasmonic scattering and local near-field amplification of silver nanoparticles. We employ a three-dimensional (3D) electromagnetic model and use the finite-difference time-domain (FDTD) and rigorously coupled-wave analysis methods to investigate the interaction of light with such a metallic particle. The numerical results show that the absorption and scattering spectra depend upon the properties of the embedded particles and the refractive index of the surrounding material. Strong redshifts and high-order modes are observed in the response spectrum with the increase of the particle size and the refractive index of the surrounding material. With an optimized design having P = 200, H = 135, and D = 70 nm, the performance of cell device is improved over a broad spectral range. Moreover, some of the absorption, in the resonance region, is beyond the Yablonovitch limit. The corresponding light-generated photocurrent is increased from 14.2 mA/cm(2) to 18.3 mA/cm(2), with a 28.9% enhancement compared with conventional cells with antireflective coatings (ARCs).
引用
收藏
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2005, Computational Electrodynamics: The Finite-Difference Time-Domain Method
  • [2] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [3] Solar cell efficiency tables (Version 53)
    Green, Martin A.
    Hishikawa, Yoshihiro
    Dunlop, Ewan D.
    Levi, Dean H.
    Hohl-Ebinger, Jochen
    Yoshita, Masahiro
    Ho-Baillie, Anita W. Y.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2019, 27 (01): : 3 - 12
  • [4] A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures
    Ha, Kyungyeon
    Jang, Eunseok
    Jang, Segeun
    Lee, Jong-Kwon
    Jang, Min Seok
    Choi, Hoseop
    Cho, Jun-Sik
    Choi, Mansoo
    [J]. NANOTECHNOLOGY, 2016, 27 (05)
  • [5] High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility
    Lin, Qingfeng
    Lu, Linfeng
    Tavakoli, Mohammad Mandi
    Zhang, Chi
    Lui, Ga Ching
    Chen, Zhuo
    Chen, Xiaoyuan
    Tang, Lei
    Zhang, Daquan
    Lin, Yuanjing
    Chang, Paichun
    Li, Dongdong
    Fan, Zhiyong
    [J]. NANO ENERGY, 2016, 22 : 539 - 547
  • [6] Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit
    Miller, Owen D.
    Yablonovitch, Eli
    Kurtz, Sarah R.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (03): : 303 - 311
  • [7] Plasmonic nanostructures for light trapping in thin-film solar cells
    Morawiec, S.
    Mendes, M. J.
    Priolo, F.
    Crupi, I.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 92 : 10 - 18
  • [8] Neviere M., 2002, Light propagation in periodic media: differential theory and design
  • [9] Palik E. D., 1997, Handbook of optical constants of solids, DOI DOI 10.1016/B978-012544415-6.50143-6
  • [10] Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters
    Rand, BP
    Peumans, P
    Forrest, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (12) : 7519 - 7526