On graphs with small number of Laplacian eigenvalues greater than two

被引:7
作者
Fan, YZ [1 ]
Li, JS
机构
[1] Anhui Univ, Dept Math, Hefei 230039, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; Laplacian eigenvalues; matching number; diameter;
D O I
10.1016/S0024-3795(02)00458-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All connected graphs with exactly one or two Laplacian eigenvalues greater than two are determined. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 11 条
  • [1] Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
  • [2] [Anonymous], LINEAR ALGEBRA APPL
  • [3] Cvetkovic D. M., 1982, Spectra of graphs. Theory and application, VSecond
  • [4] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [5] Gutman I, 1999, J SERB CHEM SOC, V64, P673
  • [6] Gutman I, 1998, ACH-MODELS CHEM, V135, P901
  • [7] A note on the second largest eigenvalue of the Laplacian matrix of a graph
    Li, JS
    Pan, YL
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2000, 48 (02) : 117 - 121
  • [8] Laplacian graph eigenvectors
    Merris, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 278 (1-3) : 221 - 236
  • [9] Merris R., 1991, PORT MATH, V48, P345
  • [10] A relation between the matching number and Laplacian spectrum of a graph
    Ming, GJ
    Wang, TS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 71 - 74