Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children

被引:114
作者
Gordon, KA
Papsin, BC
Harrison, RV
机构
[1] Hosp Sick Children, Cochlear Implant Lab, Dept Otolaryngol, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Toronto, ON, Canada
[3] Hosp Sick Children, Brain & Behav Div, Dept Otolaryngol, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada
关键词
D O I
10.1097/01.aud.0000146178.84065.b3
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Objectives: Children require audible and comfortable stimulation from their cochlear implants immediately after device activation. To accomplish this, a battery of objective measures may be needed that could include the electrically evoked stapedius reflex (ESR), compound action potential from the auditory nerve (ECAP), and/or auditory brain stem response (EABR). In the present study, the following specific research questions were asked: In children using cochlear implants, 1) Can the ECAP, EABR, and ESR be recorded at the time of cochlear implantation? 2) What is the feasibility of measuring the ECAP, EABR, and the ESR repeatedly without the use of sedation over the first year of implant use? 3) Do ECAP, EABR, and ESR thresholds or behavioral measures change over time? 4) What is the relation between ECAP, EABR, and ESR thresholds and behavioral measures of threshold and comfortably loud levels? Design: In 68 children, ECAP, EABR, and ESR responses as well as behavioral measures of stimulation threshold and maximum stimulation were recorded at regular intervals over the first year of implant use. In each child, responses were recorded to electrical pulses provided by three different electrodes along the implanted array. Visual inspections of the stapedius reflex (V-ESR) evoked by activation of the same three electrodes at the time of surgery were performed in an additional 20 children. Results: ECAP and EABR measures were obtained in more than 84% of electrodes tested and 89% of children tested both in the operating room at the time of implant surgery (OR) and after surgery in nonsedated children. ESRs were recorded by using immittance measures in more than 65% of electrodes tested and 67% of children tested by 3 mo of implant use, but this technique was less successful in the OR and during early stages of device use. V-ESRs and ECAP thresholds were higher in the OR than ESRs and ECAPs at postoperative recording times. EABR and ECAP thresholds did not significantly change over the first 6 and 12 mo of implant use, respectively, whereas ESR thresholds increased. Behavioral measures of threshold decreased over time, whereas maximum stimulation levels rose over time. Behavioral measures of threshold and loudness were highly correlated at all test times. ECAP, EABR, and behavioral measures were lower when evoked by an electrode at the apical end of the implanted array than by more basal electrodes. Behavioral thresholds could be predicted mainly by ECAP thresholds, whereas maximum stimulation levels could best be predicted by ESR thresholds; both were significantly affected by the age at implantation. Conclusions: A combination of nonbehavioral measures can aid in the determination of useful cochlear implant stimulation levels, particularly in young children and infants with limited auditory experience. These measures can be made in the operating room and can be repeated after surgery when needed. Correction factors to predict threshold stimulation levels should be based on ECAP thresholds or EABR thresholds if necessary. Correction factors should be made for at least one apical and mid-array electrode, should take into account the age of the child, and may have to be revised during the first year of implant use. Maximum stimulation levels may be best determined by using the ESR.
引用
收藏
页码:447 / 463
页数:17
相关论文
共 39 条
  • [1] Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential
    Abbas, PJ
    Brown, CJ
    Shallop, JK
    Firszt, JB
    Hughes, ML
    Hong, SH
    Staller, SJ
    [J]. EAR AND HEARING, 1999, 20 (01) : 45 - 59
  • [2] Almqvist B, 2000, AUDIOLOGY, V39, P146
  • [3] Measurement of comfort levels by means of electrical stapedial reflex in children
    Bresnihan, M
    Norman, G
    Scott, F
    Viani, L
    [J]. ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2001, 127 (08) : 963 - 966
  • [4] LONGITUDINAL ASSESSMENT OF PHYSIOLOGICAL AND PSYCHOPHYSICAL MEASURES IN COCHLEAR IMPLANT USERS
    BROWN, CJ
    ABBAS, PJ
    BERTSCHY, M
    TYLER, RS
    LOWDER, M
    TAKAHASHI, G
    PURDY, S
    GANTZ, BJ
    [J]. EAR AND HEARING, 1995, 16 (05) : 439 - 449
  • [5] INTRAOPERATIVE AND POSTOPERATIVE ELECTRICALLY-EVOKED AUDITORY BRAIN-STEM RESPONSES IN NUCLEUS COCHLEAR IMPLANT USERS - IMPLICATIONS FOR THE FITTING PROCESS
    BROWN, CJ
    ABBAS, PJ
    FRYAUFBERTSCHY, H
    KELSAY, D
    GANTZ, BJ
    [J]. EAR AND HEARING, 1994, 15 (02) : 168 - 176
  • [6] Relationship between EABR thresholds and levels used to program the CLARION® speech processor
    Brown, CJ
    Lopez, SM
    Hughes, ML
    Abbas, PJ
    [J]. ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 1999, 108 (04) : 50 - 57
  • [7] The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: Data from adults
    Brown, CJ
    Hughes, ML
    Luk, B
    Abbas, PJ
    Wolaver, A
    Gervais, J
    [J]. EAR AND HEARING, 2000, 21 (02) : 151 - 163
  • [8] Measuring the electrical stapedius reflex with stapedius muscle electromyogram recordings
    Clement, RS
    Carter, PM
    Kipke, DR
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2002, 30 (02) : 169 - 179
  • [9] *COCHL, 1999, NUCL TECHN REF MAN
  • [10] The role of a graded profile analysis in determining candidacy and outcome for cochlear implantation in children
    Daya, H
    Figueirido, JC
    Gordon, KA
    Twitchell, K
    Gysin, C
    Papsin, BC
    [J]. INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, 1999, 49 (02) : 135 - 142