RGB-D SLAM with moving object tracking in dynamic environments

被引:9
|
作者
Dai, Weichen [1 ]
Zhang, Yu [1 ]
Zheng, Yuxin [1 ]
Sun, Donglei [2 ]
Li, Ping [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Univ Nottingham Ningbo China, Ctr English Language Educ, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
VISUAL ODOMETRY; SIMULTANEOUS LOCALIZATION; MOTION; ALGORITHM;
D O I
10.1049/csy2.12019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simultaneous localization and mapping methods are fundamental to many robotic applications. In dynamic environments, SLAM methods focus on eliminating the influence of moving objects to construct a static map since they assume a static world. To improve localization robustness in dynamic environments, an RGB-D SLAM method is proposed to build a complete 3D map containing both static and dynamic maps, the latter of which consists of the trajectories and points of the moving objects. Without any prior knowledge of the moving targets, the proposed method uses only the correlation between map points to discriminate between the static scene and the moving objects. After the static points are determined, camera motion estimation is performed only on reliable static map points to eliminate the influence of moving objects. The motion of the moving objects will then be estimated with the obtained camera motion by tracking their dynamic points in subsequent frames. Moreover, multiple groups of dynamic points that belong to the same moving object are fused by a volume overlap checking step. Experimental results are presented to demonstrate the feasibility and performance of the proposed method.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 50 条
  • [41] Improving RGB-D SLAM accuracy in dynamic environments based on semantic and geometric constraints
    Wang, Xiqi
    Zheng, Shunyi
    Lin, Xiaohu
    Zhu, Fengbo
    MEASUREMENT, 2023, 217
  • [42] RGB-D SLAM in indoor dynamic environments with two channels based on scenario classification
    Zhou, Yao
    Tao, Fazhan
    Fu, Zhumu
    Chen, Qihong
    Zhu, Longlong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [43] Multi-Mask Fusion-Based RGB-D SLAM in Dynamic Environments
    Gao Y.
    Hu M.
    Chen B.
    Yang W.
    Wang J.
    Wang J.
    IEEE Sensors Journal, 2024, 24 (21) : 1 - 1
  • [44] A Compatible Framework for RGB-D SLAM in Dynamic Scenes
    Zhao, Lili
    Liu, Zhili
    Chen, Jianwen
    Cai, Weitong
    Wang, Wenyi
    Zeng, Liaoyuan
    IEEE ACCESS, 2019, 7 : 75604 - 75614
  • [45] Dynamic Objects Recognizing and Masking for RGB-D SLAM
    Li, Xiangcheng
    Wu, Huaiyu
    Chen, Zhihuan
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 169 - 174
  • [46] Dense Piecewise Planar RGB-D SLAM for Indoor Environments
    Le, Phi-Hung
    Kosecka, Jana
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4944 - 4949
  • [47] Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT
    Huang, Wei
    Zou, Chunlong
    Yun, Juntong
    Jiang, Du
    Huang, Li
    Liu, Ying
    Jiang, Guo Zhang
    Xie, Yuanmin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [48] RGB-D SLAM综述
    王旒军
    陈家斌
    余欢
    朱汇申
    导航定位与授时, 2017, 4 (06) : 9 - 18
  • [49] DRSO-SLAM: A Dynamic RGB-D SLAM Algorithm for Indoor Dynamic Scenes
    Yu, Naigong
    Gan, Mengzhe
    Yu, Hejie
    Yang, Kang
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1052 - 1058
  • [50] RGB-D object pose estimation in unstructured environments
    Choi, Changhyun
    Christensen, Henrik I.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 595 - 613