Inexact Adjoint-based SQP Algorithm for Real-Time Stochastic Nonlinear MPC

被引:18
作者
Feng, Xuhui [1 ,2 ]
Di Cairano, Stefano [1 ]
Quirynen, Rien [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] ShanghaiTech Univ, Shanghai, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Optimization algorithms; Stochastic model predictive control; MODEL PREDICTIVE CONTROL; OPTIMIZATION; UNCERTAINTY; SYSTEMS;
D O I
10.1016/j.ifacol.2020.12.068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a real-time algorithm for stochastic nonlinear model predictive control (NMPC). The optimal control problem (OCP) involves a linearization based covariance matrix propagation to formulate the probabilistic chance constraints. Our proposed solution approach uses a tailored Jacobian approximation in combination with an adjoint-based sequential quadratic programming (SQP) method. The resulting algorithm allows the numerical elimination of the covariance matrices from the SQP subproblem, while ensuring Newton-type local convergence properties and preserving the block-sparse problem structure. It allows a considerable reduction of the computational complexity and preserves the positive definiteness of the covariance matrices at each iteration, unlike an exact Jacobian-based implementation. The real-time feasibility and closed-loop control performance of the proposed algorithm are illustrated on a case study of an autonomous driving application subject to external disturbances. Copyright (C) 2020 The Authors.
引用
收藏
页码:6529 / 6535
页数:7
相关论文
共 23 条
  • [1] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [2] Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
  • [3] Berntorp K, 2018, 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), P404, DOI 10.1109/CCTA.2018.8511371
  • [4] Bock Hans Georg, 1983, Numerical treatment of inverse problems in differential and integral equations, P95, DOI [10. 1007/978-1-4684-7324-7_7, DOI 10.1007/978-1-4684-7324-7_7, DOI 10.1007/978-1-4684-7324-77]
  • [5] Cairano S.D., 2019, ARXIV PREPRINT ARXIV
  • [6] Stochastic model predictive control of LPV systems via scenario optimization
    Calafiore, Giuseppe C.
    Fagiano, Lorenzo
    [J]. AUTOMATICA, 2013, 49 (06) : 1861 - 1866
  • [7] The scenario approach for systems and control design
    Campi, Marco C.
    Garatti, Simone
    Prandini, Maria
    [J]. ANNUAL REVIEWS IN CONTROL, 2009, 33 (02) : 149 - 157
  • [8] Fagiano L, 2012, IEEE DECIS CONTR P, P142, DOI 10.1109/CDC.2012.6425919
  • [9] Gillis J., 2013, P IEEE C DEC CONTR C
  • [10] Optimization over state feedback policies for robust control with constraints
    Goulart, PJ
    Kerrigan, EC
    Maciejowski, JA
    [J]. AUTOMATICA, 2006, 42 (04) : 523 - 533