Revisiting the role of mitochondria in spinal muscular atrophy

被引:25
作者
James, Rachel [1 ]
Chaytow, Helena [1 ,2 ]
Ledahawsky, Leire M. [1 ]
Gillingwater, Thomas H. [1 ,2 ]
机构
[1] Univ Edinburgh, Edinburgh Med Sch Biomed Sci, Edinburgh EH8 9XD, Midlothian, Scotland
[2] Univ Edinburgh, Euan MacDonald Ctr Motor Neurone Dis Res, Edinburgh EH16 4SB, Midlothian, Scotland
基金
英国医学研究理事会;
关键词
Survival motor neuron; Mitochondrial dysfunction; Mitophagy; Combinatorial therapy; Motor neuron disease; Neurodegenerative disorders; MOTOR-NEURON PROTEIN; SMN PROTEIN; NEUROMUSCULAR-JUNCTIONS; MOUSE MODELS; SUBCELLULAR-LOCALIZATION; UBIQUITIN HOMEOSTASIS; GLUCOSE-METABOLISM; SINGLE NUCLEOTIDE; OXIDATIVE STRESS; DISEASE SEVERITY;
D O I
10.1007/s00018-021-03819-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease of variable clinical severity that is caused by mutations in the survival motor neuron 1 (SMN1) gene. Despite its name, SMN is a ubiquitous protein that functions within and outside the nervous system and has multiple cellular roles in transcription, translation, and proteostatic mechanisms. Encouragingly, several SMN-directed therapies have recently reached the clinic, albeit this has highlighted the increasing need to develop combinatorial therapies for SMA to achieve full clinical efficacy. As a subcellular site of dysfunction in SMA, mitochondria represents a relevant target for a combinatorial therapy. Accordingly, we will discuss our current understanding of mitochondrial dysfunction in SMA, highlighting mitochondrial-based pathways that offer further mechanistic insights into the involvement of mitochondria in SMA. This may ultimately facilitate translational development of targeted mitochondrial therapies for SMA. Due to clinical and mechanistic overlaps, such strategies may also benefit other motor neuron diseases and related neurodegenerative disorders.
引用
收藏
页码:4785 / 4804
页数:20
相关论文
共 174 条
[1]   Mitochondrial Dysfunction in a Neural Cell Model of Spinal Muscular Atrophy [J].
Acsadi, Gyula ;
Lee, Icksoo ;
Li, Xingli ;
Khaidakov, Magomed ;
Pecinova, Alena ;
Parker, Graham C. ;
Huettemann, Maik .
JOURNAL OF NEUROSCIENCE RESEARCH, 2009, 87 (12) :2748-2756
[2]   The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy [J].
Ahmad, Saif ;
Wang, Yi ;
Shaik, Gouse M. ;
Burghes, Arthur H. ;
Gangwani, Laxman .
HUMAN MOLECULAR GENETICS, 2012, 21 (12) :2745-2758
[3]   Spinal Muscular Atrophy and the Antiapoptotic Role of Survival of Motor Neuron (SMN) Protein [J].
Anderton, Ryan S. ;
Meloni, Bruno P. ;
Mastaglia, Frank L. ;
Boulos, Sherif .
MOLECULAR NEUROBIOLOGY, 2013, 47 (02) :821-832
[4]   Vps13D Encodes a Ubiquitin-Binding Protein that Is Required for the Regulation of Mitochondrial Size and Clearance [J].
Anding, Allyson L. ;
Wang, Chunxin ;
Chang, Tsun-Kai ;
Sliter, Danielle A. ;
Powers, Christine M. ;
Hofmann, Kay ;
Youle, Richard J. ;
Baehrecke, Eric H. .
CURRENT BIOLOGY, 2018, 28 (02) :287-+
[5]   The Protective Effects of Levetiracetam on a Human iPSCs-Derived Spinal Muscular Atrophy Model [J].
Ando, Shiori ;
Funato, Michinori ;
Ohuchi, Kazuki ;
Inagaki, Satoshi ;
Sato, Arisu ;
Seki, Junko ;
Kawase, Chizuru ;
Saito, Toshio ;
Nishio, Hisahide ;
Nakamura, Shinsuke ;
Shimazawa, Masamitsu ;
Kaneko, Hideo ;
Hara, Hideaki .
NEUROCHEMICAL RESEARCH, 2019, 44 (07) :1773-1779
[6]   Edaravone is a candidate agent for spinal muscular atrophy: In vitro analysis using a human induced pluripotent stem cells-derived disease model [J].
Ando, Shiori ;
Funato, Michinori ;
Ohuchi, Kazuki ;
Kameyama, Tsubasa ;
Inagaki, Satoshi ;
Seki, Junko ;
Kawase, Chizuru ;
Tsuruma, Kazuhiro ;
Shimazawa, Masamitsu ;
Kaneko, Hideo ;
Hara, Hideaki .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2017, 814 :161-168
[7]   Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment [J].
Andrade, Stephanie ;
Ramalho, Maria Joao ;
Pereira, Maria do Carmo ;
Loureiro, Joana A. .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[8]  
[Anonymous], PLOS ONE
[9]   Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells [J].
Babenko, Valentina A. ;
Silachev, Denis N. ;
Zorova, Liubava D. ;
Pevzner, Irina B. ;
Khutornenko, Anastasia A. ;
Plotnikov, Egor Y. ;
Sukhikh, Gennady T. ;
Zorov, Dmitry B. .
STEM CELLS TRANSLATIONAL MEDICINE, 2015, 4 (09) :1011-1020
[10]   Physical exercise training for type 3 spinal muscular atrophy [J].
Bartels, Bart ;
Montes, Jacqueline ;
van der Pol, W. Ludo ;
de Groot, Janke F. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2019, (03)