Novel precursor-reforming strategy to the conversion of honeycomb-like 3DOM TiO2 to ant nest-like macro-mesoporous N-TiO2 for efficient hydrogen production

被引:5
作者
Zhang, Yuanyuan [1 ]
Lan, Xuefang [1 ]
Wang, Lili [2 ]
Liu, Peizhou [1 ]
Zhang, Yuling [1 ]
Shi, Jinsheng [1 ]
机构
[1] Qingdao Agr Univ, Dept Chem & Pharmaceut Sci, Qingdao, Shandong, Peoples R China
[2] Qingdao Agr Univ, Sci & Informat Coll, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Precursor-reforming strategy; Ion doping; Morphology control; Macro-mesoporous structure; Hydrogen production; SLOW PHOTONS; LIGHT; PHOTOCATALYSTS; PERFORMANCE; CONSTRUCTION;
D O I
10.1016/j.solener.2019.10.083
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Three-dimensional ordered macroporous (3DOM) materials play an important role in improvement of photocatalytic activity owing to their unique porous structures. However, how to further enhance photocatalytic performance based on 3DOM structure is still a huge challenge. In this paper, for the first time, a novel precursor-reforming strategy is utilized to modify 3DOM TiO2 by introducing urea into precursor of TiO2. Owing to the porogen effect of urea, the morphology of prepared material changes from honeycomb-like 3DOM structure to ant nest-like macroporous-mesoporous (macro-mesoporous) architecture after the precursor-reforming treatment, which largely increases the visible light absorption ability. Urea could also act as nitrogen source to form nitrogen doped TiO2 (N-TiO2), which decreases the band gap and enlarges the light response extent. Under visible light irradiation, the ant nest-like N-TiO2 sample exhibits improved photocatalytic hydrogen evolution rate, with more than 4.1 times higher than that of honeycomb-like pure TiO2. Under solar light irradiation, photocatalytic activity of ant nest-like sample is also enhanced and hydrogen production rate is about 1.8 times higher than that of TiO2. The strengthened photocatalytic activity is ascribed to synergy effect of morphology control and nitrogen ion doping.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 30 条
[1]   Highly Efficient Ambient Temperature CO2 Photomethanation Catalyzed by Nanostructured RuO2 on Silicon Photonic Crystal Support [J].
Ali, Feysal M. ;
Ghuman, Kulbir K. ;
O'Brien, Paul G. ;
Hmadeh, Mohamad ;
Sandhel, Amit ;
Perovic, Doug D. ;
Singh, Chandra Veer ;
Mims, Charles A. ;
Ozin, Geoffrey A. .
ADVANCED ENERGY MATERIALS, 2018, 8 (09)
[2]   Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals [J].
Cai, Jinmeng ;
Wu, Moqing ;
Wang, Yating ;
Zhang, Hao ;
Meng, Ming ;
Tian, Ye ;
Li, Xingang ;
Zhang, Jing ;
Zheng, Lirong ;
Gong, Jinlong .
CHEM, 2017, 2 (06) :877-892
[3]   Hierarchical Porous Carbonized Co3O4 Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li-O2 Battery [J].
Cho, Seol A. ;
Jang, Yu Jin ;
Lim, Hee-Dae ;
Lee, Ji-Eun ;
Jang, Yoon Hee ;
Trang-Thi Hong Nguyen ;
Mota, Filipe Marques ;
Fenning, David P. ;
Kang, Kisuk ;
Shao-Horn, Yang ;
Kim, Dong Ha .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[4]   Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin [J].
Dabrowski, Marcin ;
Cieplak, Maciej ;
Sharma, Piyush Sindhu ;
Borowicz, Pawel ;
Noworyta, Krzysztof ;
Lisowski, Wojciech ;
D'Souza, Francis ;
Kuhn, Alexander ;
Kutner, Wlodzimierz .
BIOSENSORS & BIOELECTRONICS, 2017, 94 :155-161
[5]   Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency [J].
Eftekhari, Ehsan ;
Broisson, Pierre ;
Aravindakshan, Nikhil ;
Wu, Zhiqing ;
Cole, Ivan S. ;
Li, Xiaomin ;
Zhao, Dongyuan ;
Li, Qin .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12803-12810
[6]   Mesoscopic CH3NH3PbI3 perovskite solar cells using TiO2 inverse opal electron-conducting scaffolds [J].
Ha, Su-Jin ;
Heo, Jin Hyuck ;
Im, Sang Hyuk ;
Moon, Jun Hyuk .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (05) :1972-1977
[7]   Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbon-Confined Transition Metal Sulfides Quantum Dots for High-Performance Sodium Storage [J].
Hu, Xiang ;
Jia, Jingchun ;
Wang, Genxiang ;
Chen, Junxiang ;
Zhan, Hongbing ;
Wen, Zhenhai .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)
[8]   Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold [J].
Hu, Xiaotian ;
Huang, Zengqi ;
Zhou, Xue ;
Li, Pengwei ;
Wang, Yang ;
Huang, Zhandong ;
Su, Meng ;
Ren, Wanjie ;
Li, Fengyu ;
Li, Mingzhu ;
Chen, Yiwang ;
Song, Yanlin .
ADVANCED MATERIALS, 2017, 29 (42)
[9]   Simulation-guided synthesis of graphitic carbon nitride beads with 3D interconnected and continuous meso/macropore channels for enhanced light absorption and photocatalytic performance [J].
Li, Yudong ;
Jiang, Yanqiu ;
Ruan, Zhaohui ;
Lin, Kaifeng ;
Yu, Zhuobin ;
Zheng, Zhanfeng ;
Xu, Xianzhu ;
Yuan, Yuan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (40) :21300-21312
[10]   Slow Photons for Photocatalysis and Photovoltaics [J].
Liu, Jing ;
Zhao, Heng ;
Wu, Min ;
Van der Schueren, Benoit ;
Li, Yu ;
Deparis, Olivier ;
Ye, Jinhua ;
Ozin, Geoffrey A. ;
Hasan, Tawfique ;
Su, Bao-Lian .
ADVANCED MATERIALS, 2017, 29 (17)