The action of ΓK (N) and its suborbital graphs

被引:0
作者
Tapanyo, Wanchai [1 ]
Chaichana, Khuanchanok [2 ]
机构
[1] Nakhon Sawan Rajabhat Univ, Div Math & Stat, Nakhon Sawan 60000, Thailand
[2] Chiang Mai Univ, Fac Sci, Adv Res Ctr Computat Simulat, Dept Math, Chiang Mai 50200, Thailand
关键词
Suborbital graph; Congruence subgroup; Connectedness;
D O I
10.1080/09720529.2021.1930649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any natural number N, Gamma(K)(N) where K is a subgroup of Z(N) is a congruence subgroup of the modular group Gamma acting on = (Q) over cap = Q boolean OR (infinity). We determine orbits of the action of Gamma(K)(N) on (Q) over cap and present Gamma(K) (N)- invariant equivalence relation by imprimitive action. Then, we investigate the suborbital graph g(u,n)(K) arising from the action of Gamma(K)(N) on the orbit of infinity and give conditions for two adjacent vertices in graph. In addition, we obtain connectedness properties of the subgraph F-u,n(K).
引用
收藏
页码:1775 / 1783
页数:9
相关论文
共 5 条
  • [1] [Anonymous], 1979, LONDON MATH SOC LECT
  • [2] On the Action of Gamma(0) (N) on (Q)over-cap
    Guler, Bahadir Ozgur
    Kader, Serkan
    [J]. NOTE DI MATEMATICA, 2010, 30 (02): : 141 - 148
  • [3] Jaipong P, 2019, BEITR ALGEBR GEOM, V60, P181, DOI 10.1007/s13366-018-0403-9
  • [4] Jones G. A., 1991, LONDON MATH SOC LECT, V160, P316, DOI DOI 10.1017/CBO9780511661846.006
  • [5] GRAPHS AND FINITE PERMUTATION GROUPS
    SIMS, CC
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1967, 95 (01) : 76 - &