APPROXIMATE CONTROLLABILITY OF IMPULSIVE RIEMANN-LIOUVILLE FRACTIONAL EQUATIONS IN BANACH SPACES

被引:18
作者
Liu, Zhenhai [1 ,2 ]
Bin, Maojun [2 ]
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Cal, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
关键词
Impulsive fractional evolution equations; Riemann-Liouville fractional derivatives; PC1-alpha-mild solutions; approximate controllability; DIFFERENTIAL-EQUATIONS; INITIAL CONDITIONS; INCLUSIONS; SYSTEMS; EXISTENCE;
D O I
10.1216/JIE-2014-26-4-527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study control systems governed by impulsive Riemann-Liouville fractional differential equations in Banach spaces. Firstly,we introduce PC1-alpha-mild solutions for impulsive Riemann-Liouville fractional differential equations. Then,we make a set of assumptions to guarantee the existence and uniqueness of mild solutions. Finally,approximate controllability of the associated impulsive Riemann-Liouville fractional evolution control systems is also formulated and proved
引用
收藏
页码:527 / 551
页数:25
相关论文
共 41 条
  • [1] Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions
    Abada, Nadjet
    Benchohra, Mouffak
    Hammouche, Hadda
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) : 3834 - 3863
  • [2] [Anonymous], COMM NONLIN SCI NUM
  • [3] [Anonymous], 2006, THEORY APPL FRACTION
  • [4] [Anonymous], J OPTIM THEOR APPL
  • [5] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [6] On electromagnetic field in fractional space
    Baleanu, Dumitru
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 288 - 292
  • [7] On concepts of controllability for deterministic and stochastic systems
    Bashirov, AE
    Mahmudov, NI
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) : 1808 - 1821
  • [8] Controllability results for functional semilinear differential inclusions in Frechet spaces
    Benchohra, M
    Ouahab, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (03) : 405 - 423
  • [9] Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces
    Chang, Y. -K.
    Chalishajar, D. N.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (05): : 499 - 507
  • [10] Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay
    Chang, Y. -K.
    Nieto, Juan J.
    Zhao, Zhi-Han
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (03) : 593 - 599