Log minimal models according to Shokurov

被引:5
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WB, England
关键词
minimal models; Mori fibre spaces; 4-FOLD CANONICAL FLIPS; TERMINATION;
D O I
10.2140/ant.2009.3.951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Shokurov's ideas, we give a short proof of the following klt version of his result: termination of terminal log flips in dimension d implies that any klt pair of dimension d has a log minimal model or a Mori fibre space. Thus, in particular, any klt pair of dimension 4 has a log minimal model or a Mori fibre space.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 10 条
[1]   Termination of (many) 4-dimensional log flips [J].
Alexeev, Valery ;
Hacon, Christopher ;
Kawamata, Yujiro .
INVENTIONES MATHEMATICAE, 2007, 168 (02) :433-448
[2]  
[Anonymous], 2004, Proc. Steklov Inst. Math.
[3]  
Birkar C., 2006, EXISTENCE MINIMAL MO
[4]  
BIRKAR C, 2007, EXISTENCE LOG MINIMA
[5]   Addendum to "termination of 4-fold canonical flips" [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (01) :251-257
[6]   Termination of 4-fold canonical flips [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (01) :231-237
[7]   ON THE LENGTH OF AN EXTREMAL RATIONAL CURVE [J].
KAWAMATA, Y .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :609-611
[8]   3-FOLD LOG FLIPS [J].
SHOKUROV, VV .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 40 (01) :95-202
[9]  
SHOKUROV VV, 2006, LETT BIRATIONALIST, V7
[10]  
Shokurov Vyacheslav V., 1996, J. Math. Sci., V81, P2667