Band Bending Engineering at Organic/Inorganic Interfaces Using Organic Self-Assembled Monolayers

被引:19
作者
Hofmann, Oliver T. [1 ,2 ]
Rinke, Patrick [2 ,3 ]
机构
[1] Graz Univ Technol, Inst Solid State Phys, NAWI Graz, Petersgasse 16-2, A-8010 Graz, Austria
[2] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
[3] Aalto Univ, COMP, Dept Appl Phys, POB 11100, FI-00076 Aalto, Finland
基金
芬兰科学院; 奥地利科学基金会;
关键词
ENERGY-LEVEL ALIGNMENT; CHARGE-TRANSFER; ELECTRONIC-PROPERTIES; HYBRID FUNCTIONALS; METHYL VIOLOGEN; WORK-FUNCTION; ZINC-OXIDE; SURFACE; ORIENTATION; ADSORPTION;
D O I
10.1002/aelm.201600373
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Adsorbing strong electron donors or acceptors on semiconducting surfaces induces band bending, whose extent and magnitude are strongly dependent on the doping concentration of the semiconductor. This study applies hybrid density-functional theory calculations together with the recently developed charge reservoir electrostatic sheet technique to account for charge transfer from the bulk of the semiconductor to the interface. This study further investigates the impact of surface-functionalization with specifically tailored self-assembled monolayers (SAMs). For the example of three chemically-similar SAMs, that all bond to the ZnO surface via pyridine docking groups, it is shown that the SAMs introduce shallow or deep donor levels that pin the band bending at the position of the SAM's highest occupied molecular orbital. In this way, the magnitude of the induced band bending can be controlled by the type of SAM, to a point where the doping-concentration dependence is completely eliminated.
引用
收藏
页数:7
相关论文
共 52 条
[41]  
Santato C, 2010, NAT CHEM, V2, P344, DOI 10.1038/nchem.636
[42]   LATTICE RELAXATIONS AT SUBSTITUTIONAL IMPURITIES IN SEMICONDUCTORS [J].
SCHEFFLER, M .
PHYSICA B & C, 1987, 146 (1-2) :176-186
[43]   Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor [J].
Schlesinger, Raphael ;
Xu, Yong ;
Hofmann, Oliver T. ;
Winkler, Stefanie ;
Frisch, Johannes ;
Niederhausen, Jens ;
Vollmer, Antje ;
Blumstengel, Sylke ;
Henneberger, Fritz ;
Rinke, Patrick ;
Scheffler, Matthias ;
Koch, Norbert .
PHYSICAL REVIEW B, 2013, 87 (15)
[44]   Multiscale approach to the electronic structure of doped semiconductor surfaces [J].
Sinai, Ofer ;
Hofmann, Oliver T. ;
Rinke, Patrick ;
Scheffler, Matthias ;
Heimel, Georg ;
Kronik, Leeor .
PHYSICAL REVIEW B, 2015, 91 (07)
[45]   Self-assembled monolayers with charge-transfer functional groups: Immobilization of the electron donor TMPD and the electron acceptor TCNQ [J].
Skulason, H ;
Frisbie, CD .
LANGMUIR, 1998, 14 (20) :5834-5840
[46]   Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices [J].
Takanezawa, Kazuko ;
Hirota, Kouske ;
Wei, Qing-Shuo ;
Tajima, Keisuke ;
Hashimoto, Kazuhito .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (19) :7218-7223
[47]   Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data [J].
Tkatchenko, Alexandre ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2009, 102 (07)
[48]   ORIENTATION OF BENZENE AND PYRIDINE ON ZNO(10(1)OVER-BAR0) [J].
WALSH, JF ;
DAVIS, R ;
MURYN, CA ;
THORNTON, G ;
DHANAK, VR ;
PRINCE, KC .
PHYSICAL REVIEW B, 1993, 48 (19) :14749-14752
[49]   Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer [J].
White, M. S. ;
Olson, D. C. ;
Shaheen, S. E. ;
Kopidakis, N. ;
Ginley, D. S. .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[50]   Space-Charge Transfer in Hybrid Inorganic-Organic Systems [J].
Xu, Yong ;
Hofmann, Oliver T. ;
Schlesinger, Raphael ;
Winkler, Stefanie ;
Frisch, Johannes ;
Niederhausen, Jens ;
Vollmer, Antje ;
Blumstengel, Sylke ;
Henneberger, Fritz ;
Koch, Norbert ;
Rinke, Patrick ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2013, 111 (22)