Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials

被引:43
|
作者
Araujo, Maria [1 ,2 ,3 ]
Van Vlierberghe, Sandra [2 ]
Feiteira, Joao [1 ]
Graulus, Geert-Jan [2 ]
Van Tittelboom, Kim [1 ]
Martins, Jose C. [4 ]
Dubruel, Peter [2 ]
De Belie, Nele [1 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Struct Engn, Magnel Lab Concrete Res, Technol Pk Zwijnaarde 904, B-9052 Ghent, Belgium
[2] Univ Ghent, Fac Sci, Dept Organ & Macromol Chem, Polymer Chem & Biomat Grp, Campus De Sterre,Bldg S4,Krijgslaan 281, B-9000 Ghent, Belgium
[3] SIM Vzw, Technol Pk Zwijnaarde 935, B-9052 Ghent, Belgium
[4] Univ Ghent, Fac Sci, Dept Organ & Macromol Chem, NMR & Struct Anal Unit, Campus De Sterre,Bldg S4,Krijgslaan 281, B-9000 Ghent, Belgium
关键词
Self-healing; Concrete; Hydrogel precursor; Michael type addition reaction; In-situ curable hydrogels; ADDITION-REACTIONS; POLYURETHANE; HYDROGELS; CONCRETE; ACRYLATE; EFFICIENCY; COMPOSITE; DESIGN;
D O I
10.1016/j.matdes.2016.03.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To date, the potential of several types of polymeric materials as healing agents for self-healing of concrete has already been investigated. Generally, for self-healing concrete with encapsulated polymeric healing agents, the curing mechanism is triggered upon contact with moisture/air or upon reaction with a second component provided by additional capsules. The present work explores the use of in-situ curable hydrogels formed as a result of the elevated pH of the cementitious matrix, via a Michael-type addition reaction, as potential healing/sealing materials for concrete applications. For this purpose, a variety of acrylate-endcapped urethane-based precursors were synthesized and combined with a thiol-based cross-linker. Various properties including the viscosity, the curing time, the swelling capacity and the cross-linking efficiency have been evaluated. The potential of the developed materials to seal concrete cracks was assessed through manual injection. The results indicate that the cross-linking reaction can readily occur in-situ due to the alkaline environment of the cementitious matrix and that the hydrogels exhibit favorable sealing properties. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [21] Ultrasonic evaluation of self-healing within cementitious materials
    Lefever, G.
    Van Hemelrijck, D.
    Snoeck, D.
    Aggelis, D. G.
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVII, 2023, 12487
  • [22] Review on self-healing of engineered cementitious composites materials
    Kan, Li-Li
    Wang, Ming-Zhi
    Shi, Jian-Wu
    Shi, Hui-Sheng
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (05): : 05001 - 05006
  • [23] Quantitative evaluation of self-healing capacity in cementitious materials
    Amenta M.
    Metaxa Z.S.
    Papaioannou S.
    Katsiotis M.S.
    Kilikoglou V.
    Kourkoulis S.K.
    Karatasios I.
    Material Design and Processing Communications, 2021, 3 (03):
  • [24] Self-Healing Characterization of Engineered Cementitious Composite Materials
    Kan, Li-Li
    Shi, Hui-Sheng
    Sakulich, Aaron R.
    Li, Victor C.
    ACI MATERIALS JOURNAL, 2010, 107 (06) : 617 - 624
  • [25] Recent Advances in Intrinsic Self-Healing Cementitious Materials
    Li, Wenting
    Dong, Biqin
    Yang, Zhengxian
    Xu, Jing
    Chen, Qing
    Li, Haoxin
    Xing, Feng
    Jiang, Zhengwu
    ADVANCED MATERIALS, 2018, 30 (17)
  • [26] Self-healing behavior of engineered cementitious composites materials
    Kan, Lili
    Shi, Huisheng
    Zhai, Guangfei
    Ning, Ping
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2011, 39 (04): : 682 - 689
  • [27] Effect of healing products on the self-healing performance of cementitious materials with crystalline admixtures
    Park, Byoungsun
    Choi, Young Cheol
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 270
  • [28] Photo Cross-linkable Biopolymers for Cornea Tissue Healing
    Nozari, Negar
    Biazar, Esmaeil
    Kamalvand, Mahshad
    Keshel, Saeed Heidari
    Bakhsh, Shervin Shirin
    CURRENT STEM CELL RESEARCH & THERAPY, 2022, 17 (01) : 58 - 70
  • [29] Versatile catalytic strategy for polar-functionalized, cross-linkable, self-healing, and photo-responsive polyolefins
    Gao, Yanshan
    Marks, Tobin J.
    SCIENCE BULLETIN, 2020, 65 (08) : 605 - 606
  • [30] Analytical solution on dosage of self-healing agents in cementitious materials: Long capsule model
    Lv, Zhong
    Chen, Huisu
    Yuan, Haifeng
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (01) : 47 - 57