Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials

被引:43
|
作者
Araujo, Maria [1 ,2 ,3 ]
Van Vlierberghe, Sandra [2 ]
Feiteira, Joao [1 ]
Graulus, Geert-Jan [2 ]
Van Tittelboom, Kim [1 ]
Martins, Jose C. [4 ]
Dubruel, Peter [2 ]
De Belie, Nele [1 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Struct Engn, Magnel Lab Concrete Res, Technol Pk Zwijnaarde 904, B-9052 Ghent, Belgium
[2] Univ Ghent, Fac Sci, Dept Organ & Macromol Chem, Polymer Chem & Biomat Grp, Campus De Sterre,Bldg S4,Krijgslaan 281, B-9000 Ghent, Belgium
[3] SIM Vzw, Technol Pk Zwijnaarde 935, B-9052 Ghent, Belgium
[4] Univ Ghent, Fac Sci, Dept Organ & Macromol Chem, NMR & Struct Anal Unit, Campus De Sterre,Bldg S4,Krijgslaan 281, B-9000 Ghent, Belgium
关键词
Self-healing; Concrete; Hydrogel precursor; Michael type addition reaction; In-situ curable hydrogels; ADDITION-REACTIONS; POLYURETHANE; HYDROGELS; CONCRETE; ACRYLATE; EFFICIENCY; COMPOSITE; DESIGN;
D O I
10.1016/j.matdes.2016.03.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To date, the potential of several types of polymeric materials as healing agents for self-healing of concrete has already been investigated. Generally, for self-healing concrete with encapsulated polymeric healing agents, the curing mechanism is triggered upon contact with moisture/air or upon reaction with a second component provided by additional capsules. The present work explores the use of in-situ curable hydrogels formed as a result of the elevated pH of the cementitious matrix, via a Michael-type addition reaction, as potential healing/sealing materials for concrete applications. For this purpose, a variety of acrylate-endcapped urethane-based precursors were synthesized and combined with a thiol-based cross-linker. Various properties including the viscosity, the curing time, the swelling capacity and the cross-linking efficiency have been evaluated. The potential of the developed materials to seal concrete cracks was assessed through manual injection. The results indicate that the cross-linking reaction can readily occur in-situ due to the alkaline environment of the cementitious matrix and that the hydrogels exhibit favorable sealing properties. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [1] A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material
    Wu, Min
    Johannesson, Bjorn
    Geiker, Mette
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 28 (01) : 571 - 583
  • [2] An Investigation of Suitable Healing Agents for Vascular-Based Self-Healing in Cementitious Materials
    Shields, Yasmina
    Van Mullem, Tim
    De Belie, Nele
    Van Tittelboom, Kim
    SUSTAINABILITY, 2021, 13 (23)
  • [3] Self-healing characteristics of fracture in sealing materials based on self-healing effect
    Si L.
    Shi W.
    Wei J.
    Liu Y.
    Yao B.
    Meitan Xuebao/Journal of the China Coal Society, 2023, 48 (11): : 4097 - 4111
  • [4] Methyl methacrylate as a healing agent for self-healing cementitious materials
    Van Tittelboom, K.
    Adesanya, K.
    Dubruel, P.
    Van Puyvelde, P.
    De Belie, N.
    SMART MATERIALS & STRUCTURES, 2011, 20 (12):
  • [5] Self-Healing in Cementitious Materials-A Review
    Van Tittelboom, Kim
    De Belie, Nele
    MATERIALS, 2013, 6 (06) : 2182 - 2217
  • [6] Advances in Autogenous Self-healing of Cementitious Materials
    Shi D.
    Shi C.
    Wu Z.
    Zhang Z.
    Li K.
    Liu Y.
    Hou S.
    Cailiao Daobao/Materials Reports, 2021, 35 (07): : 7096 - 7106
  • [8] Progress and challenges in self-healing cementitious materials
    Carlos A. Fernandez
    Miguel Correa
    Manh-Thuong Nguyen
    Kenton A. Rod
    Gao L. Dai
    Lelia Cosimbescu
    Roger Rousseau
    Vassiliki-Alexandra Glezakou
    Journal of Materials Science, 2021, 56 : 201 - 230
  • [9] Progress and challenges in self-healing cementitious materials
    Fernandez, Carlos A.
    Correa, Miguel
    Nguyen, Manh-Thuong
    Rod, Kenton A.
    Dai, Gao L.
    Cosimbescu, Lelia
    Rousseau, Roger
    Glezakou, Vassiliki-Alexandra
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (01) : 201 - 230
  • [10] Micromechanical modelling of self-healing cementitious materials
    Davies, Robert
    Jefferson, Anthony
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 113 : 180 - 191