A note on arbitrage, approximate arbitrage and the fundamental theorem of asset pricing

被引:1
作者
Fontana, Claudio [1 ]
机构
[1] Univ Evry Val dEssonne, Lab Anal & Probabilite, F-91037 Evry, France
关键词
arbitrage; fundamental theorem of asset pricing; Ito-process; complete market; equivalent local martingale measure; martingale deflator; 60G44; 60H05; 91B70; 91G10;
D O I
10.1080/17442508.2014.895358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a critical analysis of the proof of the fundamental theorem of asset pricing given in the paper Arbitrage and approximate arbitrage: the fundamental theorem of asset pricing by B. Wong and C.C. Heyde [Stochastics 82 (2010), pp. 189-200] in the context of incomplete Ito-process models. We show that their approach can only work in the known case of a complete financial market model and give an explicit counter example.
引用
收藏
页码:922 / 931
页数:10
相关论文
共 16 条
[1]   The fundamental theorem of asset pricing for unbounded stochastic processes [J].
Delbaen, F ;
Schachermayer, W .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :215-250
[2]   ARBITRAGE POSSIBILITIES IN BESSEL PROCESSES AND THEIR RELATIONS TO LOCAL MARTINGALES [J].
DELBAEN, F ;
SCHACHERMAYER, W .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :357-366
[3]  
Delbaen F., 1994, MATH ANN, V300, P464
[4]  
Fontana C., 2013, PREPRINT
[5]  
Fontana C., 2013, EAA SERIES, P45
[6]  
Fontana C., 2012, THESIS U PADOVA
[7]  
HULLEY H, 2009, THESIS U TECHNOLOGY
[8]  
Jeanblanc M, 2009, SPRINGER FINANC, P1, DOI 10.1007/978-1-84628-737-4
[9]   MARTINGALE AND DUALITY METHODS FOR UTILITY MAXIMIZATION IN AN INCOMPLETE MARKET [J].
KARATZAS, I ;
LEHOCZKY, JP ;
SHREVE, SE ;
XU, GL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (03) :702-730
[10]   Finitely Additive Probabilities and the Fundamental Theorem of Asset Pricing [J].
Kardaras, Constantinos .
CONTEMPORARY QUANTITATIVE FINANCE: ESSAYS IN HONOUR OF ECKHARD PLATEN, 2010, :19-34