On the Clifford algebra of a binary form

被引:8
作者
Kulkarni, RS [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1090/S0002-9947-03-03293-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Clifford algebra C-f of a binary form f of degree d is the k-algebra k{x, y}/I, where I is the ideal generated by {(alphax + betay)(d) - f(alpha, beta) \ alpha, beta is an element of k}. C-f has a natural homomorphic image A(f) that is a rank d(2) Azumaya algebra over its center. We prove that the center is isomorphic to the coordinate ring of the complement of an explicit Theta-divisor in Pic(C/k)(d+g-1) where C is the curve (w(d) f(u, v)) and g is the genus of C.
引用
收藏
页码:3181 / 3208
页数:28
相关论文
共 30 条
[1]  
Arbarello E., 1985, GEOMETRY ALGEBRAIC C, VI
[2]  
Bosch S., 1990, Neron models
[3]  
CHILDS LN, 1978, LINEAR MULTILINEAR A, V5, P267, DOI [10.1080/03081087808817206, DOI 10.1080/03081087808817206]
[4]  
DEMEYER F, 1971, LECDT NOTES MATH, V181
[5]  
Fulton W., 1998, INTERSECTION THEORY
[6]  
GROTHENDIECK A, 1964, I HAUTES ETUDES SCI, V32
[7]  
GROTHENDIECK A, 1964, I HAUTES ETUDES SCI, V24
[8]  
GROTHENDIECK A, 1964, I HAUTES ETUDES SCI, V28
[9]  
Grothendieck A., 1964, I HAUTES ETUDES SCI, V20
[10]  
GROTHENDIECK A, 1959, TECHNIQUE DESCENTE T, V2