Mutation based treatment recommendations from next generation sequencing data: a comparison of web tools

被引:8
作者
Patel, Jaymin M. [1 ]
Knopf, Joshua [1 ]
Reiner, Eric [3 ]
Bossuyt, Veerle [2 ]
Epstein, Lianne [1 ]
DiGiovanna, Michael [1 ]
Chung, Gina [1 ]
Silber, Andrea [1 ]
Sanft, Tara [1 ]
Hofstatter, Erin [1 ]
Mougalian, Sarah [1 ]
Abu-Khalaf, Maysa [1 ]
Platt, James [1 ]
Shi, Weiwei [1 ]
Gershkovich, Peter [2 ]
Hatzis, Christos [1 ]
Pusztai, Lajos [1 ]
机构
[1] Yale Univ, Sch Med, Yale Canc Ctr, Med Oncol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Yale Canc Ctr, Pathol, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Yale Canc Ctr, Radiol, New Haven, CT 06520 USA
关键词
breast cancer; biomarkers and intervention studies; mutation based treatment recommendations; tumor profiling; personalized medicine; PERSONALIZED MEDICINE; CANCER; GENOMICS; VALIDATION; FREQUENCY;
D O I
10.18632/oncotarget.8017
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Interpretation of complex cancer genome data, generated by tumor target profiling platforms, is key for the success of personalized cancer therapy. How to draw therapeutic conclusions from tumor profiling results is not standardized and may vary among commercial and academically-affiliated recommendation tools. We performed targeted sequencing of 315 genes from 75 metastatic breast cancer biopsies using the FoundationOne assay. Results were run through 4 different web tools including the Drug-Gene Interaction Database (DGidb), My Cancer Genome (MCG), Personalized Cancer Therapy (PCT), and cBioPortal, for drug and clinical trial recommendations. These recommendations were compared amongst each other and to those provided by FoundationOne. The identification of a gene as targetable varied across the different recommendation sources. Only 33% of cases had 4 or more sources recommend the same drug for at least one of the usually several altered genes found in tumor biopsies. These results indicate further development and standardization of broadly applicable software tools that assist in our therapeutic interpretation of genomic data is needed. Existing algorithms for data acquisition, integration and interpretation will likely need to incorporate artificial intelligence tools to improve both content and real-time status.
引用
收藏
页码:22064 / 22076
页数:13
相关论文
共 21 条
  • [1] Combinatorial drug therapy for cancer in the post-genomic era
    Al-Lazikani, Bissan
    Banerji, Udai
    Workman, Paul
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (07) : 679 - 691
  • [2] Palifermin (recombinant keratinocyte growth factor-1): a pleiotropic growth factor with multiple biological activities in preventing chemotherapy- and radiotherapy-induced mucositis
    Blijlevens, N.
    Sonis, S.
    [J]. ANNALS OF ONCOLOGY, 2007, 18 (05) : 817 - 826
  • [3] The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data
    Cerami, Ethan
    Gao, Jianjiong
    Dogrusoz, Ugur
    Gross, Benjamin E.
    Sumer, Selcuk Onur
    Aksoy, Buelent Arman
    Jacobsen, Anders
    Byrne, Caitlin J.
    Heuer, Michael L.
    Larsson, Erik
    Antipin, Yevgeniy
    Reva, Boris
    Goldberg, Arthur P.
    Sander, Chris
    Schultz, Nikolaus
    [J]. CANCER DISCOVERY, 2012, 2 (05) : 401 - 404
  • [4] Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
    Frampton, Garrett M.
    Fichtenholtz, Alex
    Otto, Geoff A.
    Wang, Kai
    Downing, Sean R.
    He, Jie
    Schnall-Levin, Michael
    White, Jared
    Sanford, Eric M.
    An, Peter
    Sun, James
    Juhn, Frank
    Brennan, Kristina
    Iwanik, Kiel
    Maillet, Ashley
    Buell, Jamie
    White, Emily
    Zhao, Mandy
    Balasubramanian, Sohail
    Terzic, Selmira
    Richards, Tina
    Banning, Vera
    Garcia, Lazaro
    Mahoney, Kristen
    Zwirko, Zac
    Donahue, Amy
    Beltran, Himisha
    Mosquera, Juan Miguel
    Rubin, Mark A.
    Dogan, Snjezana
    Hedvat, Cyrus V.
    Berger, Michael F.
    Pusztai, Lajos
    Lechner, Matthias
    Boshoff, Chris
    Jarosz, Mirna
    Vietz, Christine
    Parker, Alex
    Miller, Vincent A.
    Ross, Jeffrey S.
    Curran, John
    Cronin, Maureen T.
    Stephens, Philip J.
    Lipson, Doron
    Yelensky, Roman
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (11) : 1023 - +
  • [5] Ponatinib: Accelerated Disapproval
    Gainor, Justin F.
    Chabner, Bruce A.
    [J]. ONCOLOGIST, 2015, 20 (08) : 847 - 848
  • [6] Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal
    Gao, Jianjiong
    Aksoy, Buelent Arman
    Dogrusoz, Ugur
    Dresdner, Gideon
    Gross, Benjamin
    Sumer, S. Onur
    Sun, Yichao
    Jacobsen, Anders
    Sinha, Rileen
    Larsson, Erik
    Cerami, Ethan
    Sander, Chris
    Schultz, Nikolaus
    [J]. SCIENCE SIGNALING, 2013, 6 (269) : pl1
  • [7] Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing
    Gerlinger, Marco
    Rowan, Andrew J.
    Horswell, Stuart
    Larkin, James
    Endesfelder, David
    Gronroos, Eva
    Martinez, Pierre
    Matthews, Nicholas
    Stewart, Aengus
    Tarpey, Patrick
    Varela, Ignacio
    Phillimore, Benjamin
    Begum, Sharmin
    McDonald, Neil Q.
    Butler, Adam
    Jones, David
    Raine, Keiran
    Latimer, Calli
    Santos, Claudio R.
    Nohadani, Mahrokh
    Eklund, Aron C.
    Spencer-Dene, Bradley
    Clark, Graham
    Pickering, Lisa
    Stamp, Gordon
    Gore, Martin
    Szallasi, Zoltan
    Downward, Julian
    Futreal, P. Andrew
    Swanton, Charles
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) : 883 - 892
  • [8] Griffith M, 2013, NAT METHODS, V10, P1209, DOI [10.1038/nmeth.2689, 10.1038/NMETH.2689]
  • [9] Jones S, 2015, SCI TRANSL MED, V7
  • [10] New Strategies in Personalized Medicine for Solid Tumors: Molecular Markers and Clinical Trial Designs
    Juergensmeier, Juliane M.
    Eder, Joseph P.
    Herbst, Roy S.
    [J]. CLINICAL CANCER RESEARCH, 2014, 20 (17) : 4425 - 4435