The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Indeed γ-Positive

被引:0
|
作者
Cao, Jie [1 ]
Liu, Lily Li [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Involution; gamma-Positivity; Hyperoctahedral Group;
D O I
10.1007/s00373-020-02258-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I-n(B) denote the set of the involutions of the hyperoctahedral group B-n, and let des(B)(pi) denote the number of descents of the permutation pi is an element of B-n. We settle a problem of Moustakas which states that I-n(B)(t) := Sigma(pi is an element of InB) t(desB(pi)) is gamma-positive for n >= 1.
引用
收藏
页码:1943 / 1951
页数:9
相关论文
共 50 条
  • [31] The Bruhat order on the involutions of the symmetric group
    Incitti, F
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (03) : 243 - 261
  • [32] The Bruhat Order on the Involutions of the Symmetric Group
    Federico Incitti
    Journal of Algebraic Combinatorics, 2004, 20 : 243 - 261
  • [33] A BAR OPERATOR FOR INVOLUTIONS IN A COXETER GROUP
    Lusztig, G.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2012, 7 (03): : 355 - 404
  • [34] Involutions and unitary subgroups in group algebras
    Balogh, Zsolt
    Creedon, Leo
    Gildea, Joe
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 391 - 400
  • [35] Involutions and unitary subgroups in group algebras
    Zsolt Balogh
    Leo Creedon
    Joe Gildea
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 391 - 400
  • [36] Products of involutions in the stable general linear group
    Pazzis, Clement de Seguins
    JOURNAL OF ALGEBRA, 2019, 530 : 235 - 289
  • [37] Symmetric Elements of Nonlinear Involutions in Group Rings
    Garcia-Delgado, R.
    Raposo, A. P.
    ALGEBRA COLLOQUIUM, 2012, 19 : 1041 - 1050
  • [38] On Normal Closures of Involutions in the Group of Limited Permutations
    Tarasov, Yuri S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (03): : 393 - 400
  • [39] Products of Involutions in Steinberg Group over Skew Fields
    Jizhu NAN Hong YOU Department of Applied Mathematics
    Chinese Annals of Mathematics, 2007, (02) : 253 - 264
  • [40] Products of involutions in Steinberg group over Skew fields
    Nan, Jizhu
    You, Hong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (02) : 253 - 264