The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Indeed γ-Positive

被引:0
作者
Cao, Jie [1 ]
Liu, Lily Li [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Involution; gamma-Positivity; Hyperoctahedral Group;
D O I
10.1007/s00373-020-02258-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I-n(B) denote the set of the involutions of the hyperoctahedral group B-n, and let des(B)(pi) denote the number of descents of the permutation pi is an element of B-n. We settle a problem of Moustakas which states that I-n(B)(t) := Sigma(pi is an element of InB) t(desB(pi)) is gamma-positive for n >= 1.
引用
收藏
页码:1943 / 1951
页数:9
相关论文
共 11 条
[1]  
Athanasiadis C.A., 2018, SEMIN LOTHAR COMB, V77, pB77i
[2]  
Comtet L., 1974, ADV COMBINATORICS AR, DOI DOI 10.1007/978-94-010-2196-8
[3]   Permutation statistics on involutions [J].
Dukes, W. M. B. .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) :186-198
[4]  
Foata D., 1970, Thorie gomtrique des polynmes eulriens, DOI [10.1007/BFb0060799, DOI 10.1007/BFB0060799]
[5]   On the Neggers-Stanley conjecture and the Eulerian polynomials [J].
Gasharov, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) :134-146
[6]   The Eulerian distribution on involutions is indeed unimodal [J].
Guo, Victor J. W. ;
Zeng, Jiang .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) :1061-1071
[7]   The γ-positivity of basic Eulerian polynomials via group actions [J].
Lin, Zhicong ;
Zeng, Jiang .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 135 :112-129
[8]   The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Unimodal [J].
Moustakas, Vassilis-Dionyssis .
GRAPHS AND COMBINATORICS, 2019, 35 (05) :1077-1090
[9]  
Shareshian J, 2020, J COMB, V11, P1
[10]  
Strehl V., 1981, SEM LOTHAR COMBIN, V1