A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions

被引:90
作者
Chen, Xue-Kun [1 ]
Liu, Jun [2 ]
Xie, Zhong-Xiang [3 ]
Zhang, Yong [3 ]
Deng, Yuan-Xiang [3 ]
Chen, Ke-Qiu [4 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Hunan Inst Technol, Dept Math & Phys, Hengyang 421002, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; CONDUCTIVITY; COHERENT;
D O I
10.1063/1.5053233
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 63 条
[41]   Heat transport across a SiGe nanowire axial junction: Interface thermal resistance and thermal rectification [J].
Rurali, Riccardo ;
Cartoixa, Xavier ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2014, 90 (04)
[42]   Engineering thermal rectification in MoS2 nanoribbons: a non-equilibrium molecular dynamics study [J].
Sandonas, Leonardo Medrano ;
Gutierrez, Rafael ;
Dianat, Arezoo ;
Cuniberti, Giovanni .
RSC ADVANCES, 2015, 5 (67) :54345-54351
[43]   Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates [J].
Song, Wooseok ;
Kim, Soo Youn ;
Kim, Yooseok ;
Kim, Sung Hwan ;
Lee, Su Il ;
Song, Inkyung ;
Jeon, Cheolho ;
Park, Chong-Yun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (37) :20023-20029
[44]   A reactive potential for hydrocarbons with intermolecular interactions [J].
Stuart, SJ ;
Tutein, AB ;
Harrison, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (14) :6472-6486
[45]   Experimental study of thermal rectification in suspended monolayer graphene [J].
Wang, Haidong ;
Hu, Shiqian ;
Takahashi, Koji ;
Zhang, Xing ;
Takamatsu, Hiroshi ;
Chen, Jie .
NATURE COMMUNICATIONS, 2017, 8
[46]   Thermal Memory: A Storage of Phononic Information [J].
Wang, Lei ;
Li, Baowen .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[47]   Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures [J].
Wang, Yan ;
Vallabhaneni, Ajit ;
Hu, Jiuning ;
Qiu, Bo ;
Chen, Yong P. ;
Ruan, Xiulin .
NANO LETTERS, 2014, 14 (02) :592-596
[48]   Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study [J].
Wang, Yan ;
Chen, Siyu ;
Ruan, Xiulin .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[49]   Sufficient Conditions for Thermal Rectification in Hybrid Quantum Structures [J].
Wu, Lian-Ao ;
Segal, Dvira .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[50]   Phonon coherence and its effect on thermal conductivity of nanostructures [J].
Xie, Guofeng ;
Ding, Ding ;
Zhang, Gang .
ADVANCES IN PHYSICS-X, 2018, 3 (01) :719-754