A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions

被引:86
作者
Chen, Xue-Kun [1 ]
Liu, Jun [2 ]
Xie, Zhong-Xiang [3 ]
Zhang, Yong [3 ]
Deng, Yuan-Xiang [3 ]
Chen, Ke-Qiu [4 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Hunan Inst Technol, Dept Math & Phys, Hengyang 421002, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; CONDUCTIVITY; COHERENT;
D O I
10.1063/1.5053233
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in pristine/branched graphene nanoribbon (GNR) junctions. The results indicate that the TR ratio of such junctions can reach 470% under small temperature bias, which has distinct superiority over asymmetric GNR and many other junctions. Moreover, the TR ratio decreases rapidly as the applied temperature bias increases. It seems to be against common sense that the TR ratio generally increases with temperature bias. Phonon spectra analyses reveal that the observed phenomena stem from the local resonance of longitudinal phonons in branched GNR region under negative temperature bias. Furthermore, the influence of ambient temperature, system length, branch number, and defect density is studied to obtain the optimum conditions for TR. This work extends local resonance mechanism to GNR for thermal signal manipulation. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 63 条
[1]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[2]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[3]   Substrate coupling suppresses size dependence of thermal conductivity in supported graphene [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANOSCALE, 2013, 5 (02) :532-536
[4]   Effect of defects on the thermal conductivity in a nanowire [J].
Chen, KQ ;
Li, WX ;
Duan, W ;
Shuai, Z ;
Gu, BL .
PHYSICAL REVIEW B, 2005, 72 (04)
[5]   Controllable Thermal Rectification Realized in Binary Phase Change Composites [J].
Chen, Renjie ;
Cui, Yalong ;
Tian, He ;
Yao, Ruimin ;
Liu, Zhenpu ;
Shu, Yi ;
Li, Cheng ;
Yang, Yi ;
Ren, Tianling ;
Zhang, Gang ;
Zou, Ruqiang .
SCIENTIFIC REPORTS, 2015, 5
[6]   Molecular dynamics study on thermal transport at carbon nanotube interface junctions: Effects of mechanical force and chemical functionalization [J].
Chen, Wen ;
Zhang, Jingchao ;
Yue, Yanan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 :1058-1064
[7]   Anisotropic thermal conductivity in carbon honeycomb [J].
Chen, Xue-Kun ;
Liu, Jun ;
Du, Dan ;
Xie, Zhong-Xiang ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (15)
[8]   Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures [J].
Chen, Xue-Kun ;
Hu, Ji-Wen ;
Wu, Xi-Jun ;
Jia, Peng ;
Peng, Zhi-Hua ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (08)
[9]   A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures [J].
Chen, Xue-Kun ;
Liu, Jun ;
Peng, Zhi-Hua ;
Du, Dan ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[10]   The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (11)