REPORT ON THE FINITENESS OF SILTING OBJECTS

被引:10
作者
Aihara, Takuma [1 ]
Honma, Takahiro [2 ]
Miyamoto, Kengo [3 ]
Wang, Qi [1 ,4 ]
机构
[1] Tokyo Gakugei Univ, Dept Math, 4-1-1 Nukuikita Machi, Koganei, Tokyo 1848501, Japan
[2] Tokyo Univ Sci, Grad Sch Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[3] Ibaraki Univ, Dept Comp & Informat Sci, 4-12-1 Nakanarusawa Cho, Hitachi, Ibaraki 3168511, Japan
[4] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
silting object; support tau-tilting module; tau-tilting-finite; WEAKLY SYMMETRIC ALGEBRAS; TAU-TILTING MODULES; PREPROJECTIVE ALGEBRAS;
D O I
10.1017/S0013091521000109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the finiteness of (two-term) silting objects. First, we investigate new triangulated categories without silting object. Second, we study two classes of tau-tilting-finite algebras and give the numbers of their two-term silting objects. Finally, we explore when tau-tilting-finiteness implies representation-finiteness and obtain several classes of algebras in which a tau-tilting-finite algebra is representation-finite.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 34 条
  • [1] Classification of two-term tilting complexes over Brauer graph algebras
    Adachi, Takahide
    Aihara, Takuma
    Chan, Aaron
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 1 - 36
  • [2] CHARACTERIZING τ-TILTING FINITE ALGEBRAS WITH RADICAL SQUARE ZERO
    Adachi, Takahide
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4673 - 4685
  • [3] The classification of τ-tilting modules over Nakayama algebras
    Adachi, Takahide
    [J]. JOURNAL OF ALGEBRA, 2016, 452 : 227 - 262
  • [4] τ-tilting theory
    Adachi, Takahide
    Iyama, Osamu
    Reiten, Idun
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (03) : 415 - 452
  • [5] Classifying tilting complexes over preprojective algebras of Dynkin type
    Aihara, Takuma
    Mizuno, Yuya
    [J]. ALGEBRA & NUMBER THEORY, 2017, 11 (06) : 1287 - 1315
  • [6] Silting mutation in triangulated categories
    Aihara, Takuma
    Iyama, Osamu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 633 - 668
  • [7] [Anonymous], 1995, REPRESENTATION THEOR, DOI DOI 10.1017/CBO9780511623608
  • [8] QUADRATIC-FORMS AND ITERATED TILTED ALGEBRAS
    ASSEM, I
    SKOWRONSKI, A
    [J]. JOURNAL OF ALGEBRA, 1990, 128 (01) : 55 - 85
  • [9] ASSEM I, 1984, J PURE APPL ALGEBRA, V33, P235, DOI 10.1016/0022-4049(84)90058-6
  • [10] Assem I., 2006, ELEMENTS REPRESENTAT