The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications

被引:89
作者
Chen, Xiao [1 ]
Yu, Han [1 ]
Gao, Yan [2 ]
Wang, Lei [2 ]
Wang, Ge [2 ]
机构
[1] Beijing Normal Univ, Inst Adv Mat, Beijing 100875, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Key Lab Funct Mat Mol & Struct Construct, Beijing 100083, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Phase change materials; 2D materials; thermal energy storage and conversion; mechanisms; advanced applications; ENHANCED THERMAL-CONDUCTIVITY; CHANGE MATERIAL COMPOSITES; BORON-NITRIDE NANOSHEETS; GRAPHENE OXIDE; POROUS SCAFFOLDS; SHAPE STABILITY; STEARIC-ACID; LATENT-HEAT; VERMICULITE COMPOSITE; TRANSPORT-PROPERTIES;
D O I
10.1016/j.enchem.2022.100071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ABS T R A C T Benefiting from high thermal storage density, wide temperature regulation range, operational simplicity, and economic feasibility, latent heat-based thermal energy storage (TES) is comparatively accepted as a cutting-edge TES concept, especially solid-liquid phase change materials (PCMs). However, liquid phase leakage, low ther-mal/electrical conductivities, weak photoabsorption capacity, and intrinsic rigidity of pristine PCMs are long-standing bottlenecks in both industrial and domestic application scenarios. Towards these goals, emerging two-dimensional (2D) materials containing regions of empty nanospace are ideal alternatives to efficiently encapsulate PCMs molecules and rationalize physical phase transformation, especially graphene, MXene and BN. Herein, we provide a timely and comprehensive review highlighting versatile roles of 2D materials in composite PCMs and relationships between their architectures and thermophysical properties. In addition, we provide an in-depth understanding of the energy conversion mechanisms and rationalize routes to high-efficiency energy conversion PCMs. Finally, we also introduced critical considerations on the challenges and opportunities in the development of advanced high-performance and multifunctional 2D material-based composite PCMs, hoping to provide constructive references and facilitate their significant breakthroughs in both fundamental researches and commercial applications.
引用
收藏
页数:33
相关论文
共 268 条
[1]   Phase change material-integrated latent heat storage systems for sustainable energy solutions [J].
Aftab, Waseem ;
Usman, Ali ;
Shi, Jinming ;
Yuan, Kunjie ;
Qin, Mulin ;
Zou, Ruqiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) :4268-4291
[2]   Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials [J].
Aftab, Waseem ;
Khurram, Muhammad ;
Jinming, Shi ;
Tabassum, Hassina ;
Liang, Zibin ;
Usman, Ali ;
Guo, Wenhan ;
Huang, Xinyu ;
Wu, Wenhao ;
Yao, Ruimin ;
Yan, Qingfeng ;
Zou, Ruqiang .
ENERGY STORAGE MATERIALS, 2020, 32 :199-207
[3]   One-Step Preparation of Form-Stable Phase Change Material through Self-Assembly of Fatty Acid and Graphene [J].
Akhiani, Amir Reza ;
Mehrali, Mohammad ;
Latibari, Sara Tahan ;
Mehrali, Mehdi ;
Mahlia, Teuku Meurah Indra ;
Sadeghinezhad, Emad ;
Metselaar, Hendrik Simon Cornelis .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (40) :22787-22796
[4]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[5]   In-situ derived graphene from solid sodium acetate for enhanced photothermal conversion, thermal conductivity, and energy storage capacity of phase change materials [J].
Atinafu, Dimberu G. ;
Wang, Chen ;
Dong, Wenjun ;
Chen, Xiao ;
Du, Minggang ;
Gao, Hongyi ;
Wang, Ge .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 205
[6]   Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy [J].
Bai, Jing ;
Liu, Yuwei ;
Jiang, Xiue .
BIOMATERIALS, 2014, 35 (22) :5805-5813
[7]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[8]   Three-Dimensional Interpenetrating Network Phase-Change Composites with High Photothermal Conversion and Rapid Heat Storage and Release [J].
Bao, Zhijie ;
Bing, Naici ;
Yao, Hu-Rong ;
Zhang, Yuan ;
Xie, Huaqing ;
Yu, Wei .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) :7710-7720
[9]   Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications [J].
Batmunkh, Munkhbayar ;
Bat-Erdene, Munkhjargal ;
Shapter, Joseph G. .
ADVANCED MATERIALS, 2016, 28 (39) :8586-8617
[10]   Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts [J].
Bie, Chuanbiao ;
Cheng, Bei ;
Fan, Jiajie ;
Ho, Wingkei ;
Yu, Jiaguo .
ENERGYCHEM, 2021, 3 (02)