Multiobjective optimization of a building envelope with the use of phase change materials (PCMs) in Mediterranean climates

被引:30
作者
Konstantinidou, Christina A. [1 ]
Lang, Werner [2 ]
Papadopoulos, Agis M. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Engn, Dept Mech Engn, Univ Campus, Thessaloniki 54124, Greece
[2] Tech Univ Munich, Inst Energy Efficient & Sustainable Design & Bldg, Ctr Sustainable Bldg, Munich, Germany
关键词
building envelope; cooling requirements; multiobjective optimization; NSGA-II; PCM; thermal comfort; thermal energy storage; THERMAL-ENERGY STORAGE; RESIDENTIAL BUILDINGS; COOLING APPLICATIONS; GENETIC ALGORITHM; NSGA-II; PERFORMANCE; DESIGN; SYSTEM; EFFICIENCY; COMFORT;
D O I
10.1002/er.3969
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal energy storage applications for buildings now receive considerable attention; many systems are in development or design. Numerous studies have examined phase change materials (PCMs) incorporated into building envelopes to enhance internal thermal comfort and energy performance, while others investigated dynamic characteristics and performance of PCMs on interior surfaces. Many commercial products are currently available, but research on PCMs in Mediterranean climates is lacking. This research aims at evaluating these studies regarding the potential impact of PCM on building comfort and energy performance in Greece. The methodology intends to optimize building envelopes concerning building cooling load requirements and thermal comfort conditions. Combined dynamic simulations and multiobjective optimization, using nondominated sorting genetic algorithm-II, evaluates design options of typical office spaces: an undivided and a fully subdivided office space, respectively. Specifically, combinations of insulation and thermal mass materials are examined quantifying thermal storage potential: as sensible storage with conventional materials or latent storage with PCM. Several PCMs, with varying melting points, are evaluated in addition to operation schedules enhancing PCM performance. Specifically, the thermal characteristics of 2 commercial products (MicronalBasf (R) PCM and SP-24 (R) from Rubitherm Technologies GmbH) are initially modeled, and several hypothetical materials are subsequently defined and evaluated. This work attempts to determine suitable applications of PCM in Mediterranean climates and evaluate their performance. The numerical results evaluate measure appropriateness, and possible trade-offs are discussed.
引用
收藏
页码:3030 / 3047
页数:18
相关论文
共 51 条
[1]   A review on phase change material (PCM) for sustainable passive cooling in building envelopes [J].
Akeiber, Hussein ;
Nejat, Payam ;
Abd Majid, Muhd Zaimi ;
Wahid, Mazian A. ;
Jomehzadeh, Fatemeh ;
Famileh, Iman Zeynali ;
Calautit, John Kaiser ;
Hughes, Ben Richard ;
Zaki, Sheikh Ahmad .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :1470-1497
[2]   Energy saving potential of phase change materials in major Australian cities [J].
Alam, Morshed ;
Jamil, Hasnat ;
Sanjayan, Jay ;
Wilson, John .
ENERGY AND BUILDINGS, 2014, 78 :192-201
[3]   A review on simulation-based optimization methods applied to building performance analysis [J].
Anh-Tuan Nguyen ;
Reiter, Sigrid ;
Rigo, Philippe .
APPLIED ENERGY, 2014, 113 :1043-1058
[4]  
[Anonymous], 2015, INP OUTP REF
[5]  
[Anonymous], 2017, ENERGYPLUS OFF WEBS
[6]   Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study [J].
Ascione, Fabrizio ;
De Masi, Rosa Francesca ;
de Rossi, Filippo ;
Ruggiero, Silvia ;
Vanoli, Giuseppe Peter .
APPLIED ENERGY, 2016, 183 :938-957
[7]   Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season [J].
Ascione, Fabrizio ;
Bianco, Nicola ;
De Masi, Rosa Francesca ;
de' Rossi, Filippo ;
Vanoli, Giuseppe Peter .
APPLIED ENERGY, 2014, 113 :990-1007
[8]   Phase change materials for building applications: A state-of-the-art review [J].
Baetens, Ruben ;
Jelle, Bjorn Petter ;
Gustavsen, Arild .
ENERGY AND BUILDINGS, 2010, 42 (09) :1361-1368
[9]  
Branke R, 2008, MULTIOBJECTIVE OPTIM, DOI [10. 1007/978-3-540-88908-3-8, DOI 10.1007/978-3-540-88908-3-8]
[10]   Materials used as PCM in thermal energy storage in buildings: A review [J].
Cabeza, L. F. ;
Castell, A. ;
Barreneche, C. ;
de Gracia, A. ;
Fernandez, A. I. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (03) :1675-1695