Quiver varieties and finite dimensional representations of quantum affine algebras

被引:250
作者
Nakajima, H [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
D O I
10.1090/S0894-0347-00-00353-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:145 / 238
页数:94
相关论文
共 58 条
[1]   Finite-dimensional representations of quantum affine algebras [J].
Akasaka, T ;
Kashiwara, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (05) :839-867
[2]  
[Anonymous], 1984, SERIES MODERN SURVEY
[3]  
[Anonymous], 1982, ASTERISQUE
[4]  
[Anonymous], 1993, INT MATH RES NOT IMR
[5]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[6]  
ATIYAH MF, 1982, PHIL T ROY SOC LON A, V0308, P00524
[7]   RIEMANN-ROCH AND TOPOLOGICAL K-THEORY FOR SINGULAR-VARIETIES [J].
BAUM, P ;
FULTON, W ;
MACPHERSON, R .
ACTA MATHEMATICA, 1979, 143 (3-4) :155-192
[8]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[9]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[10]   C-STAR-ACTIONS [J].
CARRELL, JB ;
SOMMESE, AJ .
MATHEMATICA SCANDINAVICA, 1978, 43 (01) :49-59