Modeling and Simulation Approaches for Piezoelectric Vibration Energy Harvesting Systems

被引:5
作者
Gedeon, Dominik [1 ]
Dorsch, Philipp [1 ]
Rupitsch, Stefan J. [2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Sensor Technol, D-91052 Erlangen, Germany
[2] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
关键词
Mathematical model; Integrated circuit modeling; Numerical models; Iron; Electrodes; Couplings; Vibrations; Modeling; piezoelectricity; energy harvesting; power electronics; simulation; finite element method; INTERFACE; COMPOSITE; EXTENSION; OUTPUT;
D O I
10.1109/JSEN.2021.3053338
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an overview of different modeling strategies for piezoelectric vibration energy harvesters. We point out different strength and weaknesses of common models for the electromechanical structure. Furthermore, simulation approaches for a combined simulation of the piezoelectric structure and energy extraction networks (EENs) are discussed and their basic implementations are described. We present an example of such an EEN that is controlled by the voltage of a separate electrode on the harvesting structure. Advantages of this technique over uncontrolled approaches are discussed.
引用
收藏
页码:12926 / 12939
页数:14
相关论文
共 64 条
[1]  
Aguayo AE, 2015, IEEE INT SYMP CIRC S, P1090, DOI 10.1109/ISCAS.2015.7168827
[2]   An iterative finite element method for piezoelectric energy harvesting composite with implementation to lifting structures under Gust Load Conditions [J].
Akbar, M. ;
Curiel-Sosa, J. L. .
COMPOSITE STRUCTURES, 2019, 219 :97-110
[3]  
[Anonymous], 2016, P JOINT IEEE INT S A
[4]   Advanced Model for Fast Assessment of Piezoelectric Micro Energy Harvesters [J].
Ardito, Raffaele ;
Corigliano, Alberto ;
Gafforelli, Giacomo ;
Valzasina, Carlo ;
Procopio, Francesco ;
Zafalon, Roberto .
FRONTIERS IN MATERIALS, 2016, 3
[5]  
Bathe K.J., 1996, Finite Element Procedures
[6]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[7]   A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data [J].
Beeby, Stephen P. ;
Wang, Leran ;
Zhu, Dibin ;
Weddell, Alex S. ;
Merrett, Geoff V. ;
Stark, Bernard ;
Szarka, Gyorgy ;
Al-Hashimi, Bashir M. .
SMART MATERIALS AND STRUCTURES, 2013, 22 (07)
[8]   A unified beam finite element model for extension and shear piezoelectric actuation mechanisms [J].
Benjeddou, A ;
Trindade, MA ;
Ohayon, R .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1997, 8 (12) :1012-1025
[9]   Adaptive Maximum Power Point Finding Using Direct VOC/2 Tracking Method With Microwatt Power Consumption for Energy Harvesting [J].
Chew, Zheng Jun ;
Zhu, Meiling .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (09) :8164-8173
[10]   Active Interface for Piezoelectric Harvesters Based on Multi-Variable Maximum Power Point Tracking [J].
Costanzo, Luigi ;
Lo Schiavo, Alessandro ;
Vitelli, Massimo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (07) :2503-2515