Remote Sensing of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model

被引:2
作者
Li, Zhenhai [1 ,2 ,3 ]
Jin, Xiuliang [4 ]
Yang, Guijun [1 ,2 ]
Drummond, Jane [5 ]
Yang, Hao [1 ,2 ]
Clark, Beth [6 ]
Li, Zhenhong [3 ]
Zhao, Chunjiang [1 ,2 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[2] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[3] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] INRA, NAPV, UMR EMMAH, F-84914 Avignon, France
[5] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland
[6] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国科学技术设施理事会; 中国国家自然科学基金;
关键词
leaf nitrogen concentration; canopy nitrogen density; radiative transfer model; hyperspectral; winter wheat; RADIATIVE-TRANSFER MODELS; CONTENT INDEX CCCI; CHLOROPHYLL CONTENT; VEGETATION INDEXES; HYPERSPECTRAL MEASUREMENTS; AREA-INDEX; REFLECTANCE; LAI; PLANT; SPECTROSCOPY;
D O I
10.3390/rs10091463
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plant nitrogen (N) information has widely been estimated through empirical techniques using hyperspectral data. However, the physical model inversion approach on N spectral response has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on the N-based PROSPECT model and the SAIL model canopy model was constructed and used for retrieving crop N status both at leaf and canopy scales. The results show that the third parameter (3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the highest accuracy for LAI and LND estimation, which resulted in R-2 and RMSE values of 0.80 and 0.69, and 0.46 and 21.18 mu g.cm(-)(2), respectively. It also showed good results with R-2 and RMSE values of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g.m(-2) for canopy N density (CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation index regression model (LNC: RMSE = 0.48 - 0.64%; CND: RMSE = 1.26 - 1.78 g.m(-2)). This study indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales in wheat.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] No-tillage Improves Winter Wheat (Triticum Aestivum L.) Grain Nitrogen Use Efficiency
    Omara, Peter
    Aula, Lawrence
    Oyebiyi, Fikayo
    Nambi, Eva
    Dhillon, Jagmandeep S.
    Carpenter, Jonathan
    Raun, William R.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2019, 50 (19) : 2411 - 2419
  • [22] Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption
    Guo, Bin-Bin
    Qi, Shuang-Li
    Heng, Ya-Rong
    Duan, Jian-Zhao
    Zhang, Hai-Yan
    Wu, Ya-Peng
    Feng, Wei
    Xie, Ying-Xin
    Zhu, Yun-Ji
    EUROPEAN JOURNAL OF AGRONOMY, 2017, 82 : 113 - 124
  • [23] YIELDING EFFECT OF NITROGEN AND SULFUR AT POT EXPERIMENT CONDITIONS WITH WINTER WHEAT (Triticum aestivum L.)
    Podlesna, Anna
    ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A, 2011, 18 (03): : 401 - 405
  • [24] Monitoring and evaluation in freeze stress of winter wheat (Triticum aestivum L.) through canopy hyperspectrum reflectance and multiple statistical analysis
    Feng, Meichen
    Guo, Xiaoli
    Wang, Chao
    Yang, Wude
    Shi, Chaochao
    Ding, Guangwei
    Zhang, Xueru
    Xiao, Lujie
    Zhang, Meijun
    Song, Xiaoyan
    ECOLOGICAL INDICATORS, 2018, 84 : 290 - 297
  • [25] Remote Sensing for Italian Ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] Detection in Winter Wheat (Triticum aestivum L.)
    Sanders, John T.
    Jones, Eric A. L.
    Minter, Aiden
    Austin, Robert
    Roberson, Gary T.
    Richardson, Robert J.
    Everman, Wesley J.
    FRONTIERS IN AGRONOMY, 2021, 3
  • [26] Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance
    Kanbar, Osama Zuhair
    Chege, Paul
    Lantos, Csaba
    Kiss, Erzsebet
    Pauk, Janos
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2020, 18 (05): : 369 - 381
  • [27] Comparison of the Androgenic Response of Spring and Winter Wheat (Triticum aestivum L.)
    Weigt, Dorota
    Kiel, Angelika
    Siatkowski, Idzi
    Zyprych-Walczak, Joanna
    Tomkowiak, Agnieszka
    Kwiatek, Michal
    PLANTS-BASEL, 2020, 9 (01):
  • [28] EFFECT OF FUNGICIDES ON DEOXYNIVALENOL CONTENT IN WINTER WHEAT (Triticum aestivum L.)
    Harizanova, Adelina
    Ivanova, Vanya
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2023, 66 (02): : 237 - 242
  • [29] Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data
    He, Li
    Song, Xiao
    Feng, Wei
    Guo, Bin-Bin
    Zhang, Yuan-Shuai
    Wang, Yong-Hua
    Wang, Chen-Yang
    Guo, Tian-Cai
    REMOTE SENSING OF ENVIRONMENT, 2016, 174 : 122 - 133
  • [30] Mapping hailstorm damage on winter wheat (Triticum aestivum L.) using a microscale UAV hyperspectral approach
    Furlanetto, Jacopo
    Dal Ferro, Nicola
    Caceffo, Daniele
    Morari, Francesco
    PRECISION AGRICULTURE, 2024, 25 (02) : 681 - 703