Well-posedness of a model of point dynamics for a limit of the Keller-Segel system

被引:15
作者
Velázquez, JJL [1 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Matemat Aplicada, Madrid 28040, Spain
关键词
chemotaxis; partial differential equations; well-posedness; free boundary problems;
D O I
10.1016/j.jde.2004.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to prove well-posedness for a problem that describes the dynamics of a set of points by means of a system of parabolic equations. It has been seen in Velazquez (Point dynamics in a singular limit of the Keller-Segel model. (1) motion of the concentration regions, SIAM J. Appl. Math., to appear) that the considered model is the limit of a singular perturbation problem for a system of the Keller-Segel type. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 352
页数:38
相关论文
共 20 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[3]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[4]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[5]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[6]  
Childress S., 1984, Modelling of Patterns in Space and Time, P61
[7]  
Eidelman S.D., 1969, PARABOLIC SYSTEMS, P469
[8]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[9]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[10]   Singularity patterns in a chemotaxis model [J].
Herrero, MA ;
Velazquez, JJL .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :583-623