Bernstein-Bezier finite elements on tetrahedral-hexahedral-pyramidal partitions

被引:17
作者
Ainsworth, Mark [1 ]
Davydov, Oleg [2 ]
Schumaker, Larry L. [3 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Univ Giessen, Dept Math, Arndtstr 2, D-35392 Giessen, Germany
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Pyramidal elements; Bernstein-Bezier finite elements; High order elements; SHAPE FUNCTIONS; ORDER; INVERTIBILITY; INTEGRATION;
D O I
10.1016/j.cma.2016.01.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A construction for high order continuous finite elements on partitions consisting of tetrahedra, hexahedra and pyramids based on polynomial Bernstein-Bezier shape functions is presented along with algorithms that allow the computation of the system matrices in optimal complexity O(1) per entry. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 170
页数:31
相关论文
共 29 条
[11]   Polynomial basis functions on pyramidal elements [J].
Bluck, M. J. ;
Walker, S. P. .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (12) :1827-1837
[12]   A COMPARISON OF HIGH ORDER INTERPOLATION NODES FOR THE PYRAMID [J].
Chan, Jesse ;
Warburton, T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) :A2151-A2170
[13]  
Ciarlet P.G, 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
[14]  
Ciarlet PG., 1991, Handbook of numerical analysis, VVol. II, P17
[15]   Efficiently Hex-Meshing Things with Topology [J].
Erickson, Jeff .
DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (03) :427-449
[16]   Orientation embedded high order shape functions for the exact sequence elements of all shapes [J].
Fuentes, Federico ;
Keith, Brendan ;
Demkowicz, Leszek ;
Nagaraj, Sriram .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) :353-458
[17]   CONVERSION FROM BEZIER RECTANGLES TO BEZIER TRIANGLES [J].
GOLDMAN, RN ;
FILIP, DJ .
COMPUTER-AIDED DESIGN, 1987, 19 (01) :25-27
[18]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[19]  
Karniadakis G.E., 2005, Spectral/hp Element Methods for Computational Fluid Dynamics, V2nd
[20]   Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements [J].
Knabner, P ;
Korotov, S ;
Summ, G .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2003, 40 (02) :159-172