Bernstein-Bezier finite elements on tetrahedral-hexahedral-pyramidal partitions

被引:17
作者
Ainsworth, Mark [1 ]
Davydov, Oleg [2 ]
Schumaker, Larry L. [3 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Univ Giessen, Dept Math, Arndtstr 2, D-35392 Giessen, Germany
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Pyramidal elements; Bernstein-Bezier finite elements; High order elements; SHAPE FUNCTIONS; ORDER; INVERTIBILITY; INTEGRATION;
D O I
10.1016/j.cma.2016.01.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A construction for high order continuous finite elements on partitions consisting of tetrahedra, hexahedra and pyramids based on polynomial Bernstein-Bezier shape functions is presented along with algorithms that allow the computation of the system matrices in optimal complexity O(1) per entry. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 170
页数:31
相关论文
共 29 条
[1]   A Bernstein-Bezier Basis for Arbitrary Order Raviart-Thomas Finite Elements [J].
Ainsworth, Mark ;
Andriamaro, Gaelle ;
Davydov, Oleg .
CONSTRUCTIVE APPROXIMATION, 2015, 41 (01) :1-22
[2]   PYRAMID ALGORITHMS FOR BERNSTEIN-BEZIER FINITE ELEMENTS OF HIGH, NONUNIFORM ORDER IN ANY DIMENSION [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) :A543-A569
[3]   BERNSTEIN-BEZIER FINITE ELEMENTS OF ARBITRARY ORDER AND OPTIMAL ASSEMBLY PROCEDURES [J].
Ainsworth, Mark ;
Andriamaro, Gaelle ;
Davydov, Oleg .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06) :3087-3109
[4]  
[Anonymous], 2015, Spline Functions: Computational Methods
[5]  
[Anonymous], 2003, SOBOLEV SPACES
[6]  
[Anonymous], 2002, TEXTS APPL MATH
[7]   The Serendipity Family of Finite Elements [J].
Arnold, Douglas N. ;
Awanou, Gerard .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (03) :337-344
[8]  
Baudouin Tristan Carrier, 2014, ADV MODEL SIMUL ENG, V1, P1
[9]   SHAPE FUNCTIONS AND INTEGRATION FORMULAS FOR 3-DIMENSIONAL FINITE-ELEMENT ANALYSIS [J].
BEDROSIAN, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 35 (01) :95-108
[10]   Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements [J].
Bergot, Morgane ;
Cohen, Gary ;
Durufle, Marc .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :345-381