Positive solutions to a system of semipositone fractional boundary value problems

被引:37
作者
Luca, Rodica [1 ]
Tudorache, Alexandru [2 ]
机构
[1] Gh Asachi Tech Univ, Dept Math, Iasi 700506, Romania
[2] Gh Asachi Tech Univ, Fac Comp Engn & Automat Control, Iasi 700050, Romania
关键词
Riemann-Liouville fractional differential equation; integral boundary conditions; positive solutions;
D O I
10.1186/1687-1847-2014-179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with sign-changing nonlinearities, subject to integral boundary conditions.
引用
收藏
页数:11
相关论文
共 12 条
[1]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[2]  
[Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 2006, Journal of the Electrochemical Society
[5]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[6]   Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions [J].
Graef, John R. ;
Kong, Lingju ;
Kong, Qingkai ;
Wang, Min .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :509-528
[7]   Existence and multiplicity of positive solutions for a system of fractional boundary value problems [J].
Henderson, Johnny ;
Luca, Rodica .
BOUNDARY VALUE PROBLEMS, 2014,
[8]   Positive solutions for a system of nonlocal fractional boundary value problems [J].
Henderson, Johnny ;
Luca, Rodica .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :985-1008
[9]  
Sabatier J, 2007, Advances in fractional calculus: theoretical developments and applications in physics and engineering
[10]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications