Numerical analysis on magnetic levitation of liquid metals, using a spectral finite difference scheme

被引:3
作者
Im, KC [1 ]
Mochimaru, Y [1 ]
机构
[1] Tokyo Inst Technol, Dept Int Dev Engn, Meguro Ku, Ookayama, Tokyo 1528550, Japan
关键词
spectral method; finite difference; magnetic levitation; levitation force;
D O I
10.1016/j.jcp.2004.08.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A spectral finite difference method is applied to analysis on magnetic levitation as a major unsteady-state problem in magnetohydrodynamics. Vorticity-stream function formulation is introduced in conjunction with Maxwell's equations, and the non-linear term of Ohm's law for a liquid metal is included. For the purpose of analysis treated is a liquid metal occupying a volume such that no shear stresses and no normal velocity components on the free surface are used as dynamic boundary conditions. Externally applied electromagnetic fields consist of no electromagnetic field at infinity and fields produced by circular coils placed horizontally near the liquid metal. Presented are lift force, magnetic fields and flow fields for several parameters. Numerical data for high viscosity on dimensionless force with the dimensionless vertical coil position are qualitatively in good agreement with experimental data for a solid metal [J. Appl. Phys. 23 (1952) 545]. The effects of the Reynolds number, the Strouhal number and the number of the external coil(s) on levitation force, the magnetic field and the flow field are clarified. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 128
页数:17
相关论文
共 50 条
  • [31] A NUMERICAL ABSORBING BOUNDARY-CONDITION FOR FINITE-DIFFERENCE AND FINITE-ELEMENT ANALYSIS OF OPEN STRUCTURES
    BOAG, A
    BOAG, A
    MITTRA, R
    LEVIATAN, Y
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (09) : 395 - 398
  • [32] Numerical simulation of viscoelastic flows using integral constitutive equations:: A finite difference approach
    Tome, M. F.
    de Araujo, M. S. B.
    Alves, M. A.
    Pinho, F. T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) : 4207 - 4243
  • [33] Determining Densities of Microparticles in a Magnetic Levitation Platform Using Automated Digital Image Analysis
    Tekin, H. Cumhur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [34] Magnetic Levitation Force and Torque Analysis of A Diamagnetic Material Using Nodal Force Method
    Yamaguchi, T.
    Kawase, Y.
    Onogi, W.
    Ota, T.
    Asai, Y.
    [J]. 2020 23RD INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2020, : 1882 - 1887
  • [35] Magnetic Levitation Force and Torque Analysis of a Diamagnetic Material Using Nodal Force Method
    Yamaguchi, Tadashi
    Kawase, Yoshihiro
    Onogi, Wataru
    Ota, Tomohiro
    Asai, Yasuyoshi
    [J]. IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2021, 10 (06) : 694 - 699
  • [36] Numerical Simulations of Stably Stratified Fluid Flow Using Compact Finite-Difference Schemes
    Bodnar, T.
    Fraunie, Ph.
    Kozel, K.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 103 - +
  • [37] Fixed-bed drying simulation of agricultural products using a new backward finite difference scheme
    Dalpasquale, Valdecir Antoninho
    Sperandio, Decio
    Monken e Silva, Luiz Henry
    Kolling, Evandro
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 590 - 595
  • [38] Acoustic VTI Modeling Using an Optimal Time-Space Domain Finite-Difference Scheme
    Yan, Hongyong
    Yang, Lei
    Li, Xiang-Yang
    Liu, Hong
    [J]. JOURNAL OF COMPUTATIONAL ACOUSTICS, 2016, 24 (04)
  • [39] Implementation of Elastic Prestack Reverse-Time Migration Using an Efficient Finite-Difference Scheme
    Hongyong Yan
    Lei Yang
    Hengchang Dai
    Xiang-Yang Li
    [J]. Acta Geophysica, 2016, 64 : 1605 - 1625
  • [40] Implementation of Elastic Prestack Reverse-Time Migration Using an Efficient Finite-Difference Scheme
    Yan, Hongyong
    Yang, Lei
    Dai, Hengchang
    Li, Xiang-Yang
    [J]. ACTA GEOPHYSICA, 2016, 64 (05): : 1605 - 1625